

1/ The elbow joint is flexed through an angle of 65° . Express this angle in terms of radians.
[1.134 radians]

2/ A fast twitch muscle has a period between firings of 0.0115s. Calculate the frequency of muscular twitches.
[87hz]

3/ A baseball is spinning with an angular velocity of 135rads/s. Calculate the frequency of rotation of the baseball.
[21.5hz]

4/ A carbon dioxide molecule rotates with a frequency of 6.42×10^9 Hz. Calculate its angular velocity.
[40.33x10⁹rads/s]

5/ A computer hard disk spins at 754rads/s (7200RPM). It slows down with an angular deceleration of 300rads/s². How long does it take to stop and how many revolutions does it do in this time?
[2.51s, 151 revolutions]

6/ A golf ball of radius 0.02134m is rolling across the putting green at a speed of 0.8m/s. Calculate the angular velocity of the golf ball and the centripetal acceleration at the rim of the ball.
[37.5rads/s, 30m/s²]

7/ A person is sitting still on a swivel chair holding a bicycle wheel rotating at 50rads/s in a horizontal plane. The person then flips the wheel over as shown below. What is the rotation rate of the person after having flipped the wheel. The moments of inertia are $I_{\text{person}} = 15\text{kgm}^2$ and $I_{\text{wheel}} = 0.9\text{kgm}^2$.

[6rads/s, about one revolution per second]

8/ Calculate the moment of inertia of a Frisbee of radius 0.14m and mass 0.16kg. Calculate the angular momentum and the rotational kinetic energy of the Frisbee when it is spinning at 65rads/s.
[1.568x10⁻³kgm², 0.102kgm²/s, 3.31J]

10/ Calculate the moment of inertia of a tennis racket for a rotation parallel to the direction of the strings. The pivot of the rotation is about the handle. Model the tennis racket as follows:

- Treat the handle as a bar of length 0.15cm and mass 0.12kg
- Neglect the contribution of the strings
- Treat the head as a circle of radius 0.12m and mass 0.14kg
- Because the head is rotating around the handle rather than around its centre, you have to add a term $m_{\text{head}}d^2$, where d is the distance from the handle to the centre of the racket head (this is an example of the *parallel axis theorem*).

[9.1x10⁻³kgm²]

11/ Calculate the centripetal force acting on a body of mass 4 kg moving in a circle of radius 2.6m at a frequency of 0.24 hz.

[23.65 N]

12/ Calculate the centrifugal acceleration due to the rotation of the Earth at the equator. What percentage of g due this represent ? Take the radius of the Earth to be 6356.8 km.

[0.0336 ms⁻², -0.343 %]

13/ A solid sphere of mass 2.5kg and radius 0.34m rotates at 10hz

- i) Calculate its rate of rotation in rad s⁻¹
- ii) Calculate its moment of inertia
- iii) Calculate its angular momentum
- iv) Calculate its rotational kinetic energy

[62.83rad s⁻¹, 0.1156kgm², 7.263Js, 228J]