

Rotational Kinematics

1/ Complete the following table of frequency, periodic time, and angular velocity. The first line is done as an example.

Period (s)	Frequency (Hz)	Angular velocity (rad s ⁻¹)
12	0.0833	0.524
1.6		
		0.6
	45	
1500		

2/ Express:

- 550Hz in rads s⁻¹
- A period of 0.076s in terms of frequency
- An angular velocity of 120rads s⁻¹ in terms of periodic time
- A period of 9×10^{-5} s in terms of angular velocity
- A frequency of 30.4Hz in terms of periodic time

3/ A turbine spins at 600 RPM. Calculate the frequency of rotation in hertz and the angular velocity in radians per sec.
[10Hz, 62.8rad s⁻¹]

4/ An object moves on a circular path of radius 0.04m with a frequency of 8 Hz. Calculate;

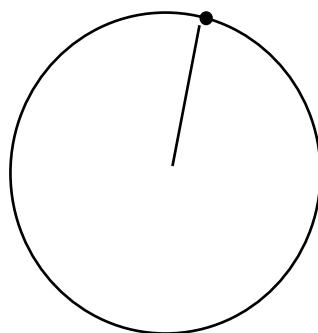
- the angular velocity, ω .
- the velocity, v .
- the radial acceleration, a_r .

[50.3 rad s⁻¹, 2.011 ms⁻¹, 101.1 ms⁻²]

5/ A golf ball spins at 3500RPM (366.5 rads s⁻¹). The ball has a radius of 2.134cm. Calculate the velocity and centripetal acceleration of a point of the equator of the ball as it spins.
[7.82ms⁻¹, 2.87x10³ms⁻²]

6/ A 1500kg car takes a corner at 20ms⁻¹. The corner has a turning radius of 65m. Calculate the centripetal acceleration of the car and the friction force needed to make it take the corner.
[6.15ms⁻², 9230N]

7/ A pilot flying at 50 ms⁻¹ does a loop the loop. At the top of the loop he feels weightless because the centrifugal acceleration just balances out gravity. Calculate the radius of the loop.
[255m]


8/ During a tennis stroke, the racket accelerates from 0 rads s^{-1} to 18 rads s^{-1} . The execution of the stroke moves the racket through 3 rads . Calculate the angular acceleration and the time for the stroke.

[54 rads s⁻², 0.33s]

9/ A ferris wheel is set in motion by an angular acceleration of $0.015 \text{ rads s}^{-1}$. Calculate the angular velocity of the wheel at 25s and calculate how far the wheel has rotated at this time.

[0.375 rads s⁻¹, 4.69 rads = $\frac{3}{4}$ of a revolution]

10/ The diagram below shows an object moving in a clockwise direction in a circular path at the end of a string. Draw vectors showing the direction of instantaneous velocity and acceleration of this particle.

11/ A basketball shot is released from the fingertips. A force of 4.64 N is exerted at the edge of the basketball which has a radius of 0.113 m and a mass of 0.6 kg . The force is exerted for a time of 0.1 s .

- i) Calculate the acceleration of the ball as it is being thrown.
- ii) Calculate the velocity of the ball just after it has been thrown.
- iii) Calculate the kinetic energy of the ball just after it has been thrown.
- iv) Calculate the torque on the basketball.
- v) Calculate the ball's moment of inertia.
- vi) Calculate the angular acceleration of the ball as it is being thrown.
- vii) Calculate the angular velocity of the ball just after it has been thrown.
- viii) Why is it advantageous to impart backspin to a basketball shot?

[7.74 ms^{-2} , 0.774 m/s , 0.18 J , 0.5243 Nm , $5.1 \times 10^{-3} \text{ kg m}^2$, 103 rads s^{-2} , 10.3 rads s^{-1}]