

Biomechanics

- Linear motion
- Momentum
- Forces
- Work energy power
- Elastic/Inelastic

Linear Motion

- **Distance travelled** – metres – s
- **Initial velocity** – ms^{-1} – v_o
- **Final velocity** – ms^{-1} – v
- **Acceleration** – ms^{-2} – a
- **Time** – seconds – t
- These five parameters linked by a set of equations which we'll look at later
- First, we'll see how they behave graphically

Analysis of 100m record

- Usain Bolt, Berlin, 23rd August 2009
- Usain Bolt World Record

Biomechanical analysis

12. IAAF World Championships in Athletics Berlin, 15. - 23.08.2009

100m Men

Semifinal/Final

	Round	Wind	RT	t _{20m}	t _{40m}	t _{60m}	t _{80m}	t _{100m}	t ₂₀₋₄₀	t ₄₀₋₆₀	t ₆₀₋₈₀	t ₈₀₋₁₀₀	t _{30m}	t ₃₀₋₆₀
Bolt Usain	JAM	Fi	0,9 0,146	2,89	4,64	6,31	7,92	9,58	1,75	1,67	1,61	1,66	3,79	2,52
	JAM	SF 1	0,2 0,135	2,89	4,68	6,41	8,11	9,89	1,79	1,73	1,70	1,78	3,81	2,60
Gay Tyson	USA	Fi	0,9 0,144	2,92	4,70	6,39	8,02	9,71	1,78	1,69	1,63	1,69	3,83	2,56
	USA	SF 2	-0,2 0,143	2,99	4,80	6,54	8,21	9,93	1,81	1,74	1,67	1,72	3,92	2,62
Powell Asafa	JAM	Fi	0,9 0,134	2,91	4,71	6,42	8,10	9,84	1,80	1,71	1,68	1,74	3,83	2,59
	JAM	SF 2	-0,2 0,133	2,92	4,73	6,47	8,17	9,95	1,81	1,74	1,70	1,78	3,85	2,62
Bailey Daniel	ANT	Fi	0,9 0,129	2,92	4,73	6,48	8,18	9,93	1,81	1,75	1,70	1,75	3,85	2,63
	ANT	SF 1	0,2 0,135	2,93	4,74	6,49	8,19	9,96	1,81	1,75	1,70	1,77	3,86	2,63
Thompson Richard	TRI	Fi	0,9 0,119	2,90	4,71	6,45	8,17	9,93	1,81	1,74	1,72	1,76	3,83	2,62
	TRI	SF 2	-0,2 0,132	2,92	4,74	6,51	8,22	9,98	1,82	1,77	1,71	1,76	3,85	2,66
Chambers Dwain	GBR	Fi	0,9 0,123	2,93	4,75	6,50	8,22	10,00	1,82	1,75	1,72	1,78	3,86	2,64
	GBR	SF 2	-0,2 0,182	2,96	4,79	6,55	8,26	10,04	1,83	1,76	1,71	1,78	3,90	2,65
Burns Marc	TRI	Fi	0,9 0,165	2,94	4,76	6,52	8,24	10,00	1,82	1,76	1,72	1,76	3,87	2,65
	TRI	SF 1	0,2 0,159	2,95	4,76	6,52	8,23	10,01	1,81	1,76	1,71	1,78	3,88	2,64
Patton Darvis	USA	Fi	0,9 0,149	2,96	4,85	6,65	8,42	10,34	1,89	1,80	1,77	1,92	3,93	42,72
	USA	SF 1	0,2 0,152	2,96	4,78	6,51	8,21	9,98	1,82	1,73	1,70	1,77	3,89	2,62

time(s)	distance (m)
0	0
2.89	20
3.79	30
4.64	40
6.31	60
7.92	80
9.58	100

100m World Record

Analysis of Graph

- Slope of line gives his speed
- Curvature of line gives his acceleration

Using the Equations to Solve Problems

- Look at the problem
 - Figure out that it's a kinematic problem
 - Identify all the given quantities in the problem
 - Write them down with their symbols
 - Make sure they are all in S.I. units.
- Write down symbol for unknown quantity.
- Choose correct equation from the list
 - equation which contains the unknown quantity AND for which all the other quantities are known.
- Rearrange the equation so that the unknown quantity is on its own on left hand side.
- Substitute values for all the known quantities.
- Solve the equation for the unknown quantity.
- Give its units.

Equation 1:

$$\underline{v} = \underline{v}_0 + \underline{a} t \quad (s \text{ is missing})$$

Equation 2:

$$\underline{s} = \underline{v}_0 t + 1/2 \underline{a} t^2 \quad (v \text{ is missing})$$

Equation 3:

$$\underline{v}^2 = \underline{v}_0^2 + 2 \underline{a} \underline{s} \quad (t \text{ is missing})$$

Equation 4:

$$\underline{s} = (\underline{v}_0 + \underline{v}) t / 2 \quad (a \text{ is missing})$$

Problems on Kinematics

1/ If a stone is dropped from the top of a building and takes 5 s to reach the ground, how tall is the building?

- $v = ?$
- $v_0 = 0\text{m/s}$
- $a = 9.81\text{m/s}^2$
- $s = ?$
- $t = 5\text{s}$

$$\begin{aligned}v &= v_0 + at \\s &= v_0 t + \frac{1}{2}at^2 \\v^2 &= v_0^2 + 2as \\2s &= (v + v_0)t\end{aligned}$$

- Need an equation that features s along with v_0 , a , and t .
- $s = v_0 t + \frac{1}{2}at^2$
- Equation doesn't need rearranging (s is on left hand side)
- $s = 0.5 + \frac{1}{2} 9.81 5^2 = 0 + 122.6\text{m} = 120\text{m}$
- **height of building is 120m**

- 2/ A ball dropped from the top of a building strikes the ground in 10s. Find the height of the building and the velocity with which the ball hits the ground.
 - [490.3m, 98.1m/s]
- 3/ A truck travelling at 20m/s decelerates uniformly to 10m/s over a distance of 100m. Determine the rate of deceleration of the truck and the time required for the truck to travel the 100m.
 - [-1.5m/s², 6.7s]
- 4/ A car moves from rest with a constant acceleration of 5m/s². Find the instantaneous speed at the end of 8s, the distance covered in 8s, and the average speed for the 8s interval.
 - [40m/s, 160m, 20m/s]
- 5/ A baseball is thrown vertically upward with a velocity of 28m/s. What is the highest point of it's trajectory?
 - [40m]

Dynamics

- Work for this week will focus on:
 - Momentum
 - Forces
 - Work
 - Energy
 - Power

Momentum – intro

- Product of mass and velocity
- Momentum is conserved, always
- Means total momentum before and after a collision is identical
- Momentum can be positive or negative, for things travelling in opposite directions
 - This is because momentum is a vector
- Units for momentum are (mass) x (velocity) or kgms^{-1}
- Symbol for momentum is p

Momentum - examples

- Let's look at some examples:
 - Calculate momentum of a 72kg person running at 5 ms^{-1} .
 - $P = mv = 72 \times 5 = 360 \text{kgms}^{-1}$
 - Calculate the momentum of a hockey puck (0.16kg) moving at 22 ms^{-1}
 - $P = mv = 0.16 \times 22 = 3.52 \text{kgms}^{-1}$
 - Calculate the momentum of a hockey puck (0.16kg) moving at 22 ms^{-1}
 - $P = mv = 0.16 \times 22 = 3.52 \text{kgms}^{-1}$

Momentum - conservation

- The reason we care about momentum is because it's conserved
- In any collision we get:
 - $(\text{total momentum before}) = (\text{total momentum after})$
- Powerful way of solving impact problems
 - Don't need information about details of collision to work out key details

Momentum - Conservation

- Some examples:

- A golf club with a clubhead of 0.35kg strikes a golf ball of mass 0.046kg. The clubhead speed before impact is 42ms^{-1} , after impact it is 33.2ms^{-1} . Calculate the launch speed of the golf ball.

$$(\text{total momentum before}) = (\text{total momentum after})$$

$$\Rightarrow m_c v_{c_i} = m_c v_{c_f} + m_b v_{b_f}$$

$$\Rightarrow m_b v_{b_f} = m_c v_{c_i} - m_c v_{c_f}$$

$$\Rightarrow m_b v_{b_f} = 0.35 \times 42 - 0.35 \times 33.2$$

$$\Rightarrow m_b v_{b_f} = 14.7 - 11.6 = 3.1$$

$$\Rightarrow v_{b_f} = \frac{3.1}{m_b} = \frac{3.1}{0.046} = 67\text{ms}^{-1}$$

Momentum - conservation

- A bowling ball of mass 7kg strikes a bowling pin of mass 1.5kg. The initial speed of the bowling ball is 11ms^{-1} , after impact it is 6ms^{-1} . Calculate the speed of the pin after it is hit.

$$(\text{total momentum before}) = (\text{total momentum after})$$

$$\Rightarrow m_b v_{b_i} = m_b v_{b_f} + m_p v_{p_f}$$

$$\Rightarrow m_p v_{p_f} = m_b v_{b_i} - m_b v_{b_f}$$

$$\Rightarrow m_p v_{p_f} = 7 \times 11 - 7 \times 6$$

$$\Rightarrow m_p v_{p_f} = 77 - 42 = 35$$

$$\Rightarrow v_{p_f} = \frac{35}{m_b} = \frac{35}{1.5} = 23\text{ms}^{-1}$$

Momentum - conservation

- The cue ball in snooker has a mass of 0.4kg. It strikes a stationary red ball of mass 0.38kg at a speed of 2.3ms^{-1} . It recoils at a speed of 0.5ms^{-1} . Calculate the speed of the red ball after the impact.

$$(\text{total momentum before}) = (\text{total momentum after})$$

$$\Rightarrow m_c v_{c_i} = m_c v_{c_f} + m_r v_{r_f}$$

$$\Rightarrow m_r v_{r_f} = m_c v_{c_i} - m_c v_{c_f}$$

$$\Rightarrow m_r v_{r_f} = 0.4 \times 2.3 - 0.4 \times (-0.5)$$

$$\Rightarrow m_r v_{r_f} = 0.92 + 0.2 = 1.12$$

$$\Rightarrow v_{r_f} = \frac{1.12}{m_r} = \frac{1.12}{0.38} = 2.95\text{ms}^{-1}$$

- Note how recoil of cue ball is in opposite direction so velocity is negative

Forces

- During the collisions of the previous problems there was a very sharp change in velocity
- This gives very short, very large accelerations
- Like all accelerations, they are produced by forces
- Whenever there is an acceleration there is a force acting

Forces – types of force

- Collisions involve impact forces
 - Typically very large but of short duration
- In previous problems we've met the force of gravity
 - Leads to acceleration of 9.81ms^{-2} downwards
- Other forces include friction
 - Walking, driving cars etc
 - Pushes and pulls are forces
 - Get forces from stretching or compressions springs
 - Restoring forces

Forces – and acceleration

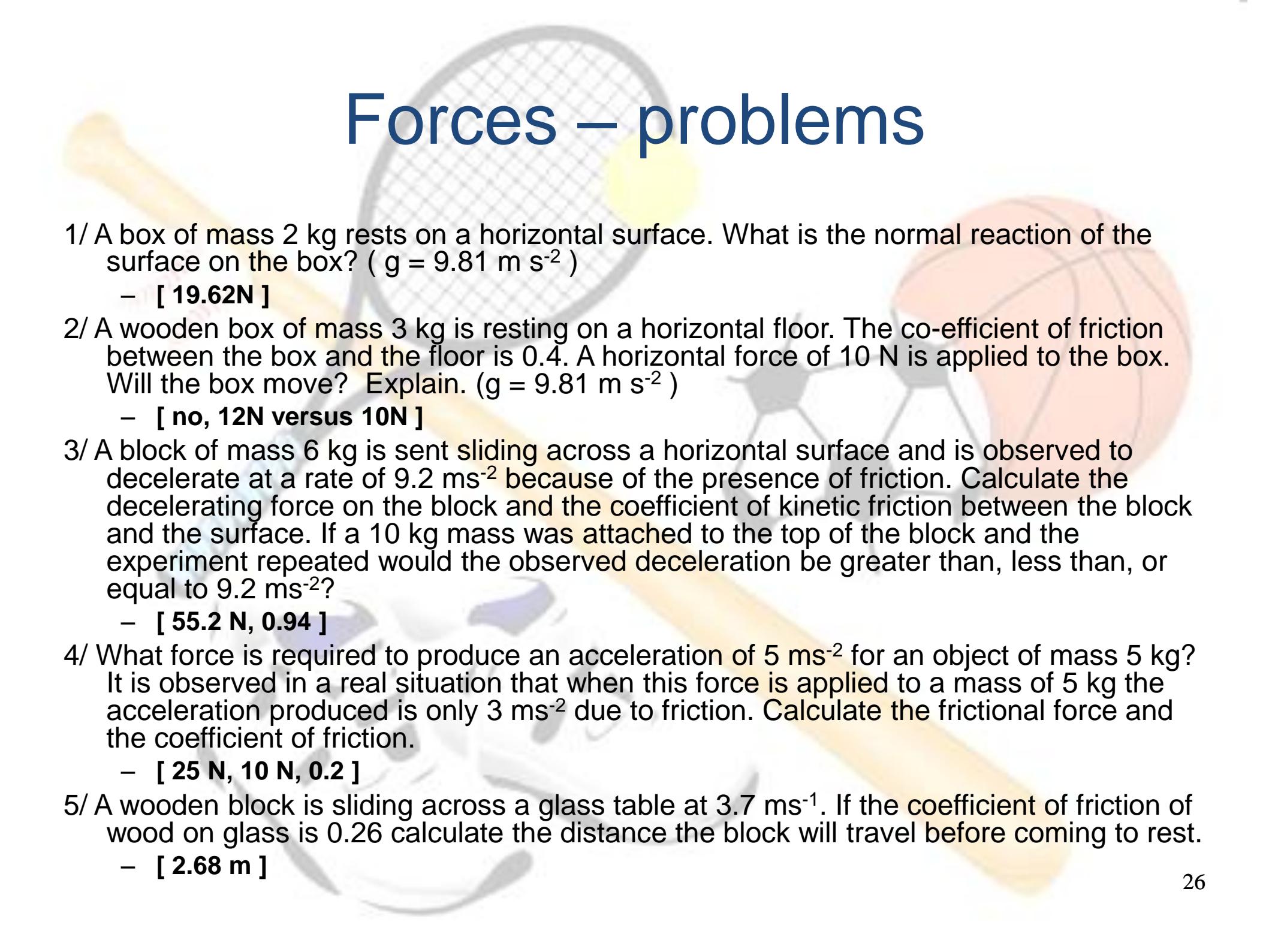
- Forces are connected to accelerations
- Whenever there is an acceleration there is an unbalanced force
- Mathematical link between them given by Newton's Laws
- $F = ma$
- Really defines what a force is

Forces – units

- From $F = ma$ we can figure out the SI unit for force
- Get F to be measured in kgms^{-2}
- Give this a special name, the Newton (N)

Forces – gravity

- We've met mass already
- Similar concept is weight
- Weight = mass x gravity
- $W = mg$
- Weight is a force, measured in Newtons
- Example; weight of a 72kg person is:
 - $W = 72 \times 9.81 = 706.32N$
- Usually when we measure mass we actually measure weight and figure out the g


Forces – friction1

- Surfaces in contact
- Opposes relative motion
- Can push against an object but it won't move
 - Friction force grows to counteract the push
 - Only when the friction gets to its maximum value will we get movement
 - Usually, oncew something is moving the friction reduces slightly
 - Called statis and dynamic friction

Forces – friction2

- Size of friction force depends on:
 - How rough or smooth the surfaces are
 - Strength of force bonding them together
- Equation for friction is $F_{\text{friction}} = \mu mg$
 - Assumes surfaces horizontal
 - Assumes nothing unusual welding surfaces together
- μ is the coefficient of friction
 - just a number
 - is zero for incredibly smooth surfaces
 - is one for extremely rough surfaces

Forces – problems

- 1/ A box of mass 2 kg rests on a horizontal surface. What is the normal reaction of the surface on the box? ($g = 9.81 \text{ m s}^{-2}$)
 - [19.62N]
- 2/ A wooden box of mass 3 kg is resting on a horizontal floor. The co-efficient of friction between the box and the floor is 0.4. A horizontal force of 10 N is applied to the box. Will the box move? Explain. ($g = 9.81 \text{ m s}^{-2}$)
 - [no, 12N versus 10N]
- 3/ A block of mass 6 kg is sent sliding across a horizontal surface and is observed to decelerate at a rate of 9.2 ms^{-2} because of the presence of friction. Calculate the decelerating force on the block and the coefficient of kinetic friction between the block and the surface. If a 10 kg mass was attached to the top of the block and the experiment repeated would the observed deceleration be greater than, less than, or equal to 9.2 ms^{-2} ?
 - [55.2 N, 0.94]
- 4/ What force is required to produce an acceleration of 5 ms^{-2} for an object of mass 5 kg? It is observed in a real situation that when this force is applied to a mass of 5 kg the acceleration produced is only 3 ms^{-2} due to friction. Calculate the frictional force and the coefficient of friction.
 - [25 N, 10 N, 0.2]
- 5/ A wooden block is sliding across a glass table at 3.7 ms^{-1} . If the coefficient of friction of wood on glass is 0.26 calculate the distance the block will travel before coming to rest.
 - [2.68 m]

Work

- Work is done when a force moves through a distance
- Ingredients are force and movement
- Equation is work = force x distance
- (technically the force and distance have to be lined up, so there's an angle term as well)
- Units for work are (Newtons) x (metres)
- Call these Joules

Work - Examples

- A 82kg runner accelerates from rest to 4ms^{-1} in 15m.
 - Show that the acceleration of the runner is 0.533ms^{-2}
 - Show that the acceleration force of the runner is 43.73N
 - Show that the work done by the runner is 656J

Energy

- Energy is the ability to do work
- Energy comes in lots of different forms
- During a process, energy can change from one form to another
- But, overall, energy is conserved
- Thermal energy is awkward, can't always convert back to mechanical energies

Energy - Types

- For each type of work there is a corresponding type of energy
- Energy due to motion = Kinetic energy = $\frac{1}{2} mv^2$
- Gravitational potential energy = mgh
- Spring (elastic) potential energy = $\frac{1}{2} kx^2$

Work - Examples

- Work done acceleration a body = $\frac{1}{2} mv^2$
- Calculate the kinetic energy of a 82kg runner moving at 4ms^{-1}
 - Use kinetic energy = $\frac{1}{2} mv^2$
 - $\Rightarrow \text{K.E.} = \frac{1}{2} 82 \times 4^2$
 - $\Rightarrow \text{K.E.} = 656\text{J}$
 - Compare with problem on slide 28

Energy & Food

- Food energy often measured in Calories (sometimes called kcal)
- 1 Calorie = $4184\text{J} = 4.184\text{kJ}$
- Energy content of different foods given below:

food	Energy (kJ/g)	Energy (kcal/g)
Carbohydrates	17.2	4.1
Proteins	17.2	4.1
Fat	38.9	9.3
Potato	3.89	0.93
Eggs	6.82	1.63
Butter	30.1	7.20
Apples	2.43	0.58

Energy & Food-Oxidation of glucose

- Energy can come from oxidation of glucose:

- For every 1g of glucose we get 16kJ of energy
- This requires 0.75L of oxygen
- So get 21kJ per litre of oxygen

Energy & Food-Fat Breakdown

- Energy can come from fats:

- For every 1g of fat we get 26.9kJ of energy
- This requires 1.37L of oxygen
- So get 19.6kJ per litre of oxygen

Energy & Food-Energy Storage

- Body doesn't use this energy directly, uses ATP to store it
- For example, every time a glucose molecule is burnt it produces 38 molecules of ATP
- Only 44% of energy from glucose is captured by the ATP (rest becomes heat)
- The energy from ATP is released when we require (e.g. for muscle contraction)
 - Hydrolysis of ATP to ADP
 - About half of the energy of ATP becomes useful work
 - Overall efficiency of ATP use about 20%, at best

Energy & Food-Oxygen usage

- As we've seen, both glucose and fat produce about 20kJ of energy for every litre of oxygen breathed in
- Easy to measure oxygen intake, multiplying this by 20kJ gives us the *catabolic rate* (rate of production of energy in Watts)
- Table below gives catabolic rate for some activities:

activity	Power (W)	Oxygen consumption (L/min)
Sleeping	83	0.25
Walking	200	0.60
Cycling (25km/hr)	1000	3.0
Tennis	440	1.32
Basketball	800	2.40
Swimming	475	1.43

- Oxygen intake is about 5% of inhaled air

Energy & Food Efficiency

- Efficiency measures the amount of useful work we get divided by the amount of energy we consume
- Depends on type of activity
- Always need about 83W of energy from food (*Basal Metabolic Rate* or *BMR*)
- Using large muscle groups such as in your legs gives efficiencies of ~20%
- Using smaller muscle groups such as upper body gives efficiencies of ~3%

Energy & Food Efficiency

- The amount of energy required to run a certain distance is independent of time taken, pretty much
- But faster speeds require greater powers.
- Empirical relation is:
$$\text{energy required} = 3.89 \text{kJ} \times (\text{person's mass}) \times (\text{distance run})$$
- E.g. running 3km for an 85kg person requires almost 1000kJ
- Same as about 25g of fat (say, 3 slices of bread)

Energy - mechanical

- Special class of “flexible” energies
 - Kinetic
 - Potential
 - Gravitational
 - Elastic
- When these are conserved process is called ***Elastic***
- Otherwise process is called ***Inelastic***

Energy - Example

- Let's re-examine the problem from slide 16
 - A golf club with a clubhead of 0.35kg strikes a golf ball of mass 0.046kg. The clubhead speed before impact is 42ms^{-1} , after impact it is 33.2ms^{-1} . Using momentum conservation we calculated the launch speed of the golf ball to be 67ms^{-1} .
 - Is this an elastic collision?
 - KE before collision is $\text{KE}_{\text{club}} + \text{KE}_{\text{ball}} = 308.7\text{J}$
 - KE after collision is $\text{KE}_{\text{club}} + \text{KE}_{\text{ball}} = 296.1\text{J}$
 - Inelastic collision
 - Some energy has been lost to heat, sound, vibrations, etc

Energy – Inelastic Collisions

- Need some way to express amount of inelasticity in collision
- Define **Coefficient of Restitution (COR)**

$$COR = \frac{v_{A_{final}} - v_{B_{final}}}{v_{A_{initial}} - v_{B_{initial}}}$$

Energy – Inelastic Collisions

- What is the COR for the golf ball from slide 33?

$$COR = \left| \frac{v_{A_{final}} - v_{B_{final}}}{v_{A_{initial}} - v_{B_{initial}}} \right|$$

$$\Rightarrow COR = \left| \frac{67 - 33.2}{42 - 0} \right|$$

$$\Rightarrow COR = 0.804$$

Energy – Inelastic Collisions

- If collision is perfectly elastic then the COR is 1.0
- If collision is perfectly inelastic then the COR is 0
- For bouncing balls, can use $v^2 = v_0^2 + 2as$ to get another version of the COR equation:

$$COR = \sqrt{\frac{\text{bounce height}}{\text{drop height}}}$$

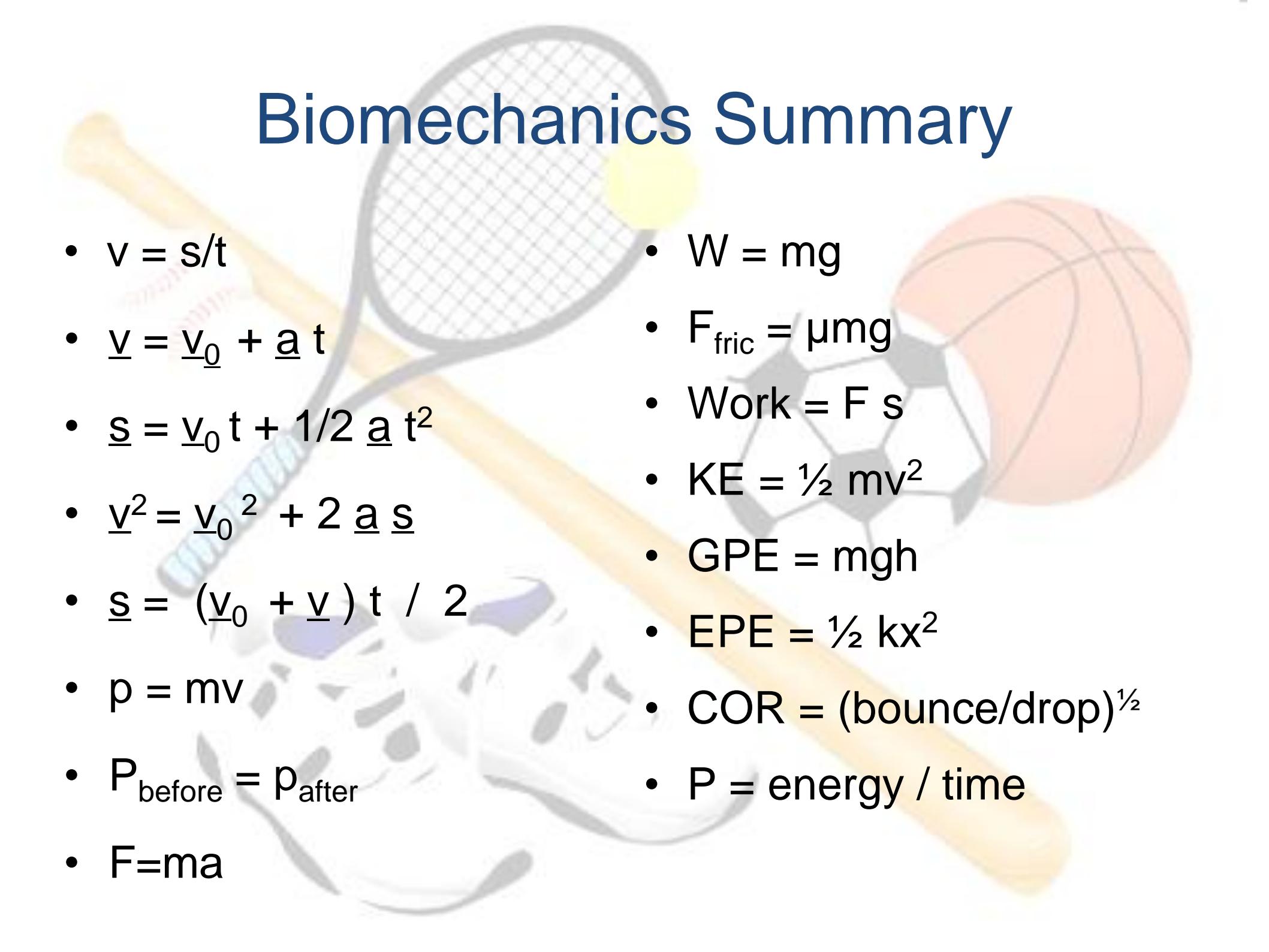
- Permissible COR's regulated by sports bodies

Power

- Rate of doing work
- Power = (work done) / (time taken)
- Units are Joules per second, or just **Watts**
- For muscles, maximum power output comes at about half their maximum speed of contraction
- Maximum power output also depends on duration of activity
- 3 to 6 Watts for each kg of body mass for one hour
- 25 Watts per kg possible for short spells

Power - example

- A sprinter of mass 82kg produces 2050W of power for 1.8s to accelerate his body from rest. Calculate the speed of the sprinter after 1.8s.
 - Total energy produced is Power x time = 3690J
 - Kinetic energy = $\frac{1}{2} mv^2 = 3690$
 - Therefore final speed = $v = 9.49\text{ms}^{-1}$


Power - example

- A 68kg cyclist is climbing a 1 in 4 hill. If the cyclist is producing 204W of power, calculate his speed (neglect the weight of the bicycle, in a 1 in 4 hill for every metre you climb you move forward 4.12m)
 - Power used to climb hill, gravitational energy
 - $\text{power} \times \text{time} = mgh$
 - Therefore $\text{power} = mgh / t$
 - Therefore rate of climb = $h/t = P/mg = 204/(68 \times 9.81)$
 - $h/t = 0.306 \text{ms}^{-1}$
 - this means forward speed = $0.306 \times 4.12 = 1.26 \text{ms}^{-1}$

Biomechanics Summary

- Distance / speed / acceleration
- Distance/time graphs
- Kinematic equations
- Momentum, conservation
- Forces
 - Gravity
 - Friction
- Work
- Energy
- Elastic / inelastic
- Coefficient of Restitution
- power

Biomechanics Summary

- $v = s/t$
- $v = v_0 + a t$
- $s = v_0 t + 1/2 a t^2$
- $v^2 = v_0^2 + 2 a s$
- $s = (v_0 + v) t / 2$
- $p = mv$
- $P_{\text{before}} = P_{\text{after}}$
- $F=ma$
- $W = mg$
- $F_{\text{fric}} = \mu mg$
- $\text{Work} = F s$
- $KE = \frac{1}{2} mv^2$
- $GPE = mgh$
- $EPE = \frac{1}{2} kx^2$
- $\text{COR} = (\text{bounce}/\text{drop})^{1/2}$
- $P = \text{energy} / \text{time}$