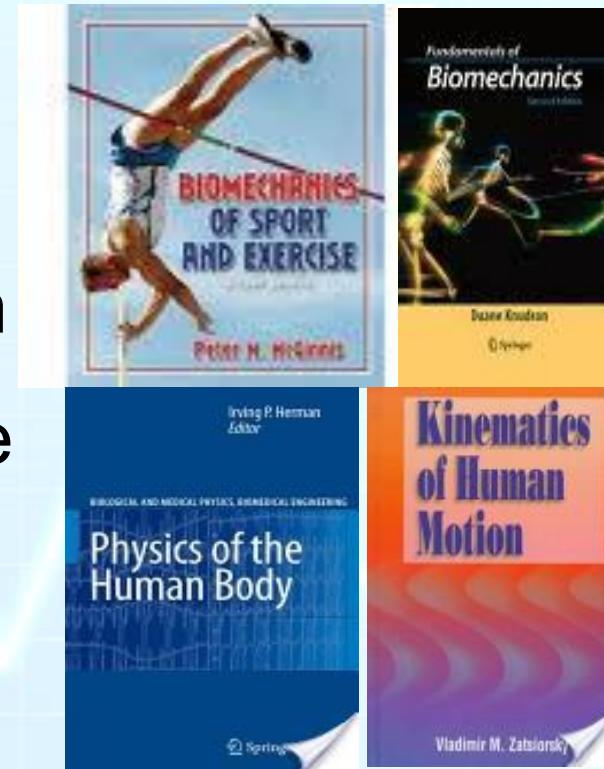


Principles of Physics

- Introduction
- Units and measurement
- Biomechanics in Linear Motion
 - Forces
 - Momentum
 - Work energy power
- Circular motion
 - Torques
 - Angular momentum
 - Work energy power
- Vectors

Introduction - schedule


- 3 lectures a week
 - Monday 10:00 room 032
 - Monday 11:00 room 032
 - Monday 12:00 room 032
 - (also lab classes every Tuesday morning)
 - Will be on Tuesday mornings at 9:30-11:30 & 11:30-13:30
 - In TN-101
 - Start tomorrow, January 27th

Introduction - assessment

- End of semester exam in May
 - Worth 70% of final mark
- Weekly tests
 - Worth 30%
 - Use brightspace (make sure you're logged into system)
 - Based on previous weeks work
 - Get ~3 attempts over the course of the week
- Lab work assessed as part of common lab module

Introduction - textbooks

- Several available in library
- Course based on these
- Don't *need* to buy any of them
- Always worth checking google books for texts
- Should be consulting them regularly
- Also free good textbook at OpenStax (<https://openstaxcollege.org/textbooks/collegephysics>)

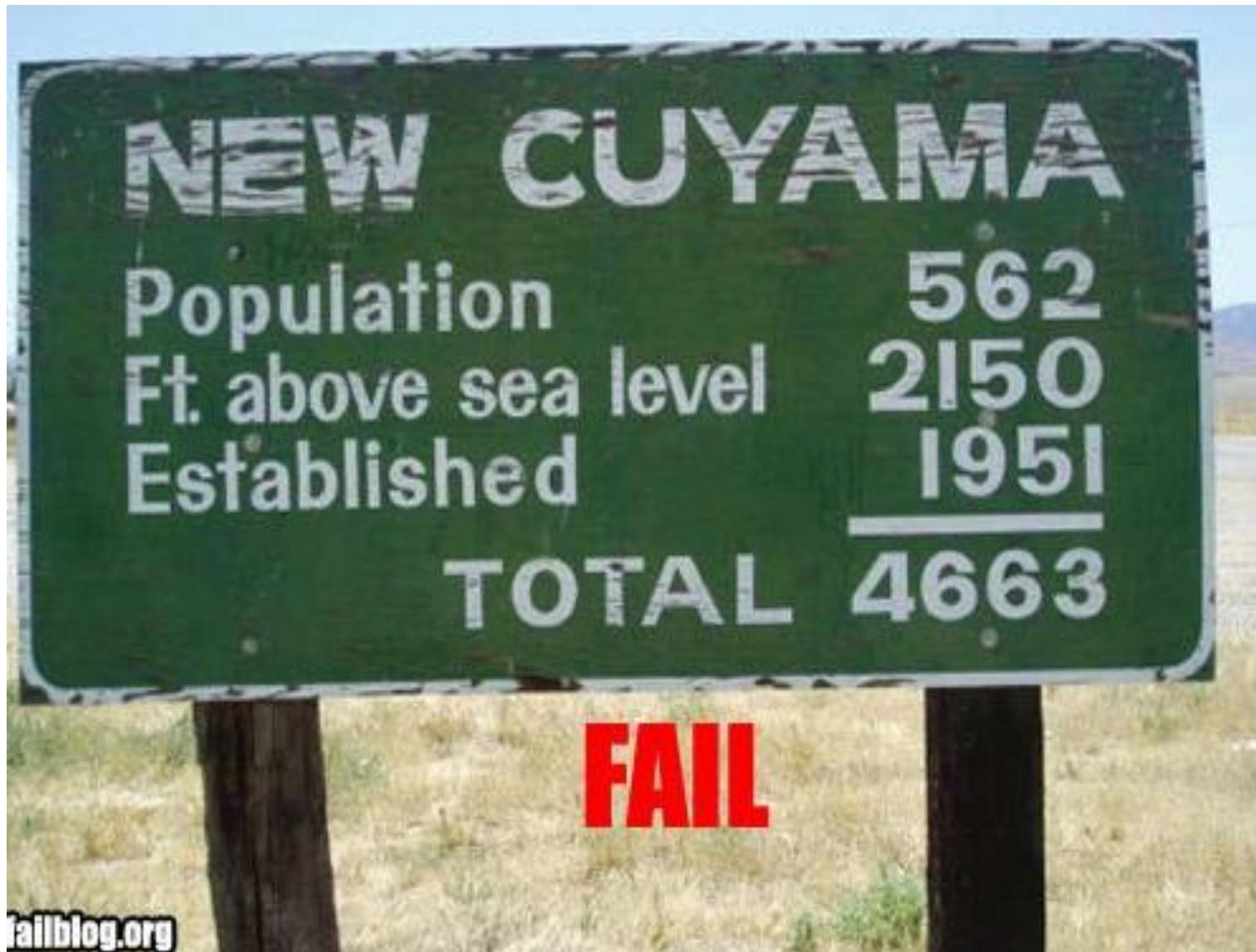
Introduction – why study physics?

- Helps explain sporting techniques
- Helps develop new sporting techniques
- Helps in development of new equipment
- Helps prevent injury
- Helps rehabilitation

Units and Measurement

- Physics explains events in nature through
 - measurement of different physical quantities
 - forming relationships between these different quantities
- To measure a quantity need a unit measure of the quantity
- These units need to be standard so that valid comparisons may be made

- Remarkably, in all science we just need seven units (and two associate units)
- And in mechanics it is possible to get by with just three fundamental quantities, deriving other units in terms of these three units
- The three quantities in question are
 - Mass in kilograms (kg)
 - Length in metres (m)
 - Time in seconds (s)
- There are careful calibration standards for these, e.g. the International ProtoType Kilogram kept in Paris


© PjrTravel/Alamy

Derived Units

- With every measurement taken or calculation performed, units must be supplied.
- The dimensions of many other physical quantities may be expressed in terms of length mass and time
 - speed = [length] / [time]
 - density = [mass] / [volume]
= [mass] / [length³]
- Some quantities do not have any dimensions

Velocity	v	m.s^{-1}
Acceleration	a	m.s^{-2}
Energy	E	$\text{kg.m}^2.\text{s}^{-2}$
Force	F	kg.m.s^{-2}
Work	W	$\text{kg.m}^2.\text{s}^{-2}$
Power	P	$\text{kg.m}^2.\text{s}^{-3}$
Pressure	p	$\text{kg.m}^{-1}.\text{s}^{-2}$
Density	ρ	kg.m^{-3}

Being Consistent with Units is Important

Dealing with Non-SI Units

- Not everyone uses SI units all the time (though they should)
- For example kilometres per hour
 - Kilometres are OK (we'll see this in a moment)
 - Hours are not SI
 - $1\text{km} / \text{hr}$ is 1000m in 3600 seconds
 - This is 1m in 3.6s
 - This is $1/3.6$ m in 1 second
 - So 1km/hr is 0.278m/s
 - So 80 km/hr is $80 \times 0.278\text{ m/s} = 22.22\text{m/s}$

Dealing with Non-SI Units

- Similarly
 - 1 square yard is (1 yard) by (1 yard)
 $= (0.9144\text{m}) \times (0.9144\text{m})$
 $= 0.836\text{m}^2$
 - And $1\text{m}^2 = 1/0.836$ square yards $= 1.196$ square yards
 - One pound per cubic yard is
 $= 0.4536 / (0.9144)^3 \text{ kgm}^{-3}$
 $= 0.593\text{kgm}^{-3}$
 - 1 degree fahrenheit is 1.8 times celsius plus 32
 - i.e. ${}^{\circ}\text{F} = 1.8{}^{\circ}\text{C} + 32$
 - or ${}^{\circ}\text{C} = 0.556 ({}^{\circ}\text{F} - 32)$

Dealing with Very Big and Very Small Measurements

- Metres, seconds, and kilograms are convenient sizes for people
- But in science, we deal with a much wider range of phenomena
- So we have a problem expressing our measurements clearly
 - Example, speed of light is 299792485m/s
- Two solutions
 - Use prefixes: changes size of unit
 - Use scientific notation: clever way of writing awkward numbers

Prefixes

<u>Prefix</u>	<u>Symbol</u>	<u>Power of 10</u>
– giga	G	10^9
– mega	M	10^6
– kilo	k	10^3
– base unit	-	10^0
– centi	c	10^{-2}
– milli	m	10^{-3}
– micro	μ	10^{-6}
– nano	n	10^{-9}

Scientific Notation

- An alternative to using prefixes
- Uses powers of ten to get across size of number
- For example speed of light is 300000000 m/s
- More convenient to write 3×10^8 m/s
- Big numbers
 - More decimal point to the left
 - Count number of jumps necessary to get simple number
 - Number of jumps becomes power of ten
 - Power of ten is positive
- Small numbers
 - More decimal point to the right
 - Count number of jumps necessary to get simple number
 - Number of jumps becomes power of ten
 - Power of ten is negative

Problems on Scientific Notation

1/ Express 0.00345m in scientific notation

- Move decimal point so that there is one significant figure to the left of the decimal point => 3.45 x 10something
- Decimal point moves to the right => negative power of 10
- Takes 3 steps to the right => power is –3
- Answer is $3.45 \times 10^{-3}\text{m}$

2/ Express 0.078s in scientific notation

- [$7.8 \times 10^{-2}\text{s}$]

3/ Express 94300kg in scientific notation

- [$9.43 \times 10^4\text{kg}$]

Unit Conversion

- For all calculations in Physics it is necessary to convert all units to the same system. For this course all units must be converted to S.I.
- Length, Area and Volume
- Length:
 - $1 \text{ cm} = 1 \times 10^{-2} \text{ m}$
 - $1 \text{ mm} = 1 \times 10^{-3} \text{ m}$
- Area:
 - $1 \text{ cm}^2 = 1 \times 10^{-4} \text{ m}^2$
 - $1 \text{ mm}^2 = 1 \times 10^{-6} \text{ m}^2$
- Volume:
 - $1 \text{ cm}^3 = 1 \times 10^{-6} \text{ m}^3$
 - $1 \text{ mm}^3 = 1 \times 10^{-9} \text{ m}^2$
- Note: $1 \text{ cm}^3 = 1 \text{ ml} = 1 \text{ cc}$

Units of Volume

- ***The Cubic Metre (m³) :***

This is the S.I. unit. It is the volume of a cube with an edge length of 1 m

1m³

- **The Litre:**

A cube with an edge length of 1 dm contains a volume of 1 cubic decimeter (1 dm³)

Is a thousand times bigger than

The litre (1L) is a more common name for 1 dm³

1L

- **The cubic centimeter (1 cm³):**

This is the volume of a cube with an edge length of 1 cm

Is a thousand times bigger than

It is also called a milliliter (ml) and is 0.001 L

1cm³

Density

Density is the ratio of the mass of a substance to its volume.

- SI unit = kg/m^3
(using S.I. units of mass and volume)
- Other units:
 - g/cm^3
 - For gases we usually use units of g/L
- Most liquids and solids have densities that range from 0.9 g/cm^3 (ice) to 11.3 g/cm^3 (lead)
 - density of air = 1.2 g/L

1kgm^{-3}

Is the same
as

1g/L

Is a thousand
times smaller
than

1gcm^{-3}

Problems on Unit Conversion

1

Convert $2.87 \times 10^{-2} \text{ cm}^2$ to m^2

- $1 \text{ cm}^2 = 1 \times 10^{-4} \text{ m}^2$
- take away 4 from the power of ten to change from cm^2 to m^2
- power goes from -2 to -6
- Answer is $2.87 \times 10^{-6} \text{ m}^2$

2

Convert $9.2 \times 10^{-12} \text{ m}$ to mm
• [$9.2 \times 10^{-9} \text{ mm}$]

3

Convert $6.914 \times 10^8 \text{ mm}^3$ to m^3
• [$6.914 \times 10^{-1} \text{ m}^3 = 0.6914 \text{ m}^3$]

4

Convert $5.68 \times 10^2 \text{ m}^3$ to cc
• [$5.68 \times 10^8 \text{ cc}$]