

1/ Which of the three principle types of flowsheet would one use to:

- give a new employee an overview of the plant process?
- trace down a fault in a control loop?
- make a preliminary capital cost estimate to construct a plant?
- indicate whether a controller is to be located in the control room or in the plant?
- indicate which pipe lines need insulation?
- represent major pieces of equipment as rectangles rather than icons?
- In what type of flowsheet would one expect to find pipe diameters and materials of construction?

2/ 500kg of a 5% slurry of calcium hydroxide in water is to be prepared by diluting a 20% slurry. Calculate the quantities required.
[125kg of 20% Ca(OH)_2 and 375kg of H_2O]

3/ 20% excess air is supplied to a furnace burning 100m³/hr of natural gas (95% methane, 5% ethane by volume). Calculate the air flow of air (21% O₂) required. The reactions are:

$$\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O}$$

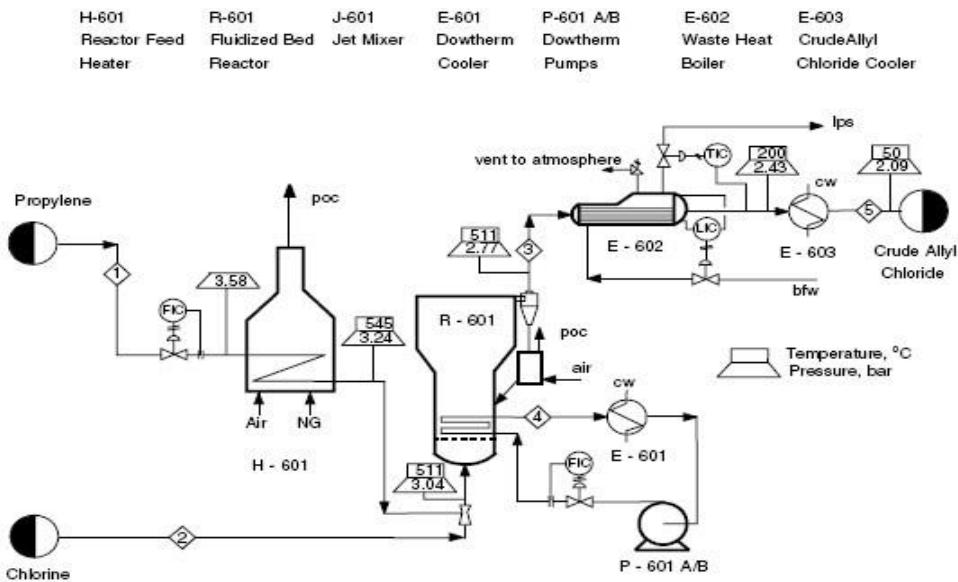
$$\text{C}_2\text{H}_6 + 7/2 \text{O}_2 \rightarrow 2\text{CO}_2 + 3\text{H}_2\text{O}$$

[1185.7m³/hr]

4/ In the production of ethanol by the hydrolysis of ethylene, diethyl ether is produced as a by-product. The feed stream composition is 55% ethylene, 5% inerts, 40% water. The composition of the product stream is 52.26% ethylene, 5.49% ethanol, 0.16% ether, 36.81% water, 5.28% inerts. All percentages are by mole. Calculate the selectivity of ethylene for ethanol and for ether and also the conversion of ethylene. The reactions are:

$$\text{C}_2\text{H}_4 + \text{H}_2\text{O} \rightarrow \text{C}_2\text{H}_5\text{OH}$$

$$2\text{C}_2\text{H}_5\text{OH} \rightarrow (\text{C}_2\text{H}_5)_2\text{O} + \text{H}_2\text{O}$$


[selectivity for ethanol = 94.4%, for ether = 5.44%, conversion = 10%]

5/ A train of two distillation columns is being used to separate a mixture of hexane, heptane and octane. The feed to the first column contains 40 mole% hexane, 30 mole% heptane and 30 mole% octane and enters at a rate of 2500 kmol/h. In the first column 98% of the octane fed is recovered in the bottom product. Essentially no hexane goes with the bottom product and the mole fraction of octane in the bottom is 99.5%. The overhead product flows to a second column. The overhead product from the second column contains 98 mole% hexane and no octane. In addition, 98% of the hexane fed to this column is recovered in the overhead.

- Draw a diagram of the process, labeling all of the streams.
- Calculate the molar flow rates and mole fractions for each stream in the process.

6/ In ammonia production from H₂ and N₂, unreacted material is recycled. The feed stream to the process is at 200mols/hr and contains 0.2% argon as an inert. To avoid a build up of the inert there is a purge stream. Calculate the required flow rate in the purge stream to maintain the argon level in the recycle stream below 5%.
[8 mols/hr]

7/ Examine the process flow diagram below and answer the following questions:

- What is the pressure (in bar) in stream 5?
- What is the temperature change in the product caused by E-603?
- What is the role of the LIC between E-603 and the boiler feed water (bfw)?
- What differences (composition, pressure, temperature, flowrate, vapour fraction) are there between streams 3 and 5?
- What is the overall conversion of this process?

Stream No.	1	2	3	4	5
Temperature (°C)	25	25	511	400	50
Pressure (bar)	11.7	6.44	2.77	11.34	2.09
Vapor fraction	1.0	1.0	1.0	0.0	1.0
Mass flowrate (tonne/h)	3.19	1.40	4.59	16.63	4.59
Molar flowrate (kmol/h)					
Propylene	75.89	—	58.08	—	58.08
Chlorine	—	19.70	—	—	—
Allyl chloride	—	—	15.56	—	15.56
2-Chloro propene	—	—	0.46	—	0.46
Di chloro propene	—	—	1.81	—	1.81
Hydrogen chloride	—	—	19.70	—	19.70
Carbon	—	—	— ¹	—	—
Dowtherm™ A	—	—	—	4.62 kg/s	—
Total mole flow (kmol/h)	75.89	19.70	95.61	4.62 kg/s	95.61

$$\text{Conversion} = \frac{\text{moles of reagent consumed}}{\text{moles of reagent supplied}}$$

Selectivity

$$= \frac{\text{moles of product formed}}{\text{moles of product that could have been formed had all reagent been used to make product}}$$

$$= \frac{\text{moles of product formed}}{\text{moles of product formed}}$$

$$\text{Yield} = \frac{\text{moles of reagent supplied} \times \text{stoichiometry}}{\text{moles of reagent supplied}}$$

$$\text{Yield} = \text{conversion} * \text{selectivity}$$