

02 Crystal II

Symmetries

Translation

- Already dealt with translational symmetries
 - This comes from Bravais Lattices
 - Shape of Lattice
 - Cubic, tetragonal, hexagonal, etc.....
 - Type of Lattice
 - Primitive, face centered, body centered, base centered

Point Group Symmetries

- Keep at least one point fixed (not translations)
- Seven of them:
 - Identity
 - Rotation
 - Reflection
 - Inversion
 - Improper rotation
 - Glide plane
 - Screw axis
- First five keep at least one point fixed
 - Called **point operations**

Identity

- Changes nothing
- Trivial
- Don't need to discuss further

Rotation

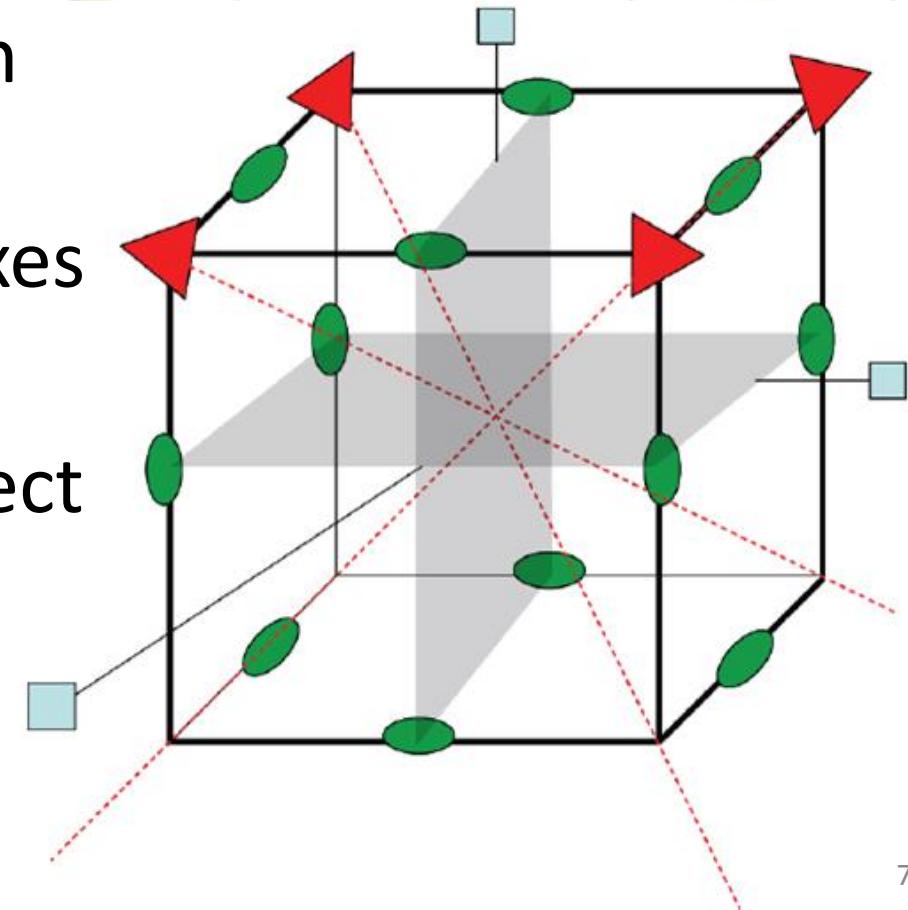
- N-fold rotation equates to a $360/N^\circ$ about an axis
- Only some N's possible for crystals (1, 2, 3, 4, 6)

N	Hermann-Mauguin	Schoenflies
1	1	C_1
2	2	C_2
3	3	C_3
4	4	C_4
6	6	C_6



Rotations in Cubes

- Four 3-fold rotation axes
- Three 4-fold rotation axes
- Six 2-fold rotation axes
- Note, they all intersect at centre of cell (in general true)



Reflection Plane - Mirror

- Reflection through a mirror plane
- Hermann-Mauguin symbol – m
- Schoenflies symbol – C_s

Inversion – Centre of Symmetry

- Reflection through a point
- Hermann-Mauguin symbol – $\bar{1}$
- Schoenflies symbol – C_1

Improper Rotation - Rotoinversion

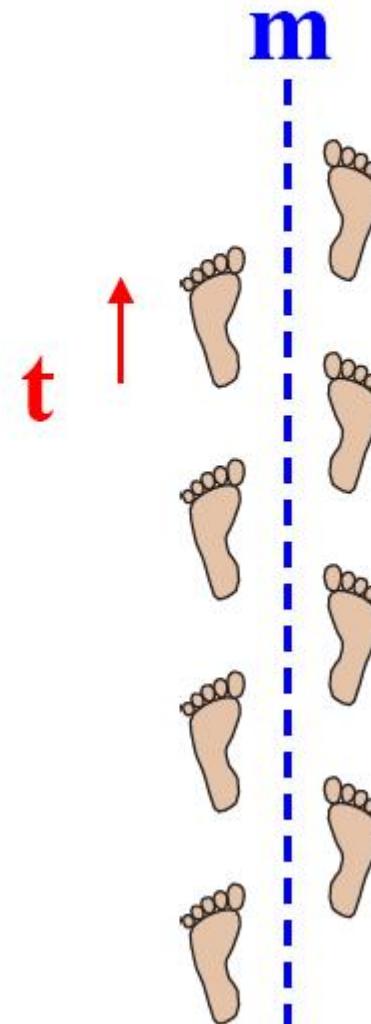
- Composite operation of two symmetries in succession
 - N-fold rotation followed by inversion through a point

N	Hermann-Mauguin	Schoenflies
1	\mathbb{I}	C_i
2	$\mathbb{2}$ (m)	C_s
3	$\mathbb{3}$	S_6
4	$\mathbb{4}$	S_4
6	$\mathbb{6}$	S_3

- A bit different in Schoenflies
 - Rotation followed by reflection in plane \perp to rotation axis

Glide Reflection

A two-step operation: reflection followed by translation (g)



Glide Reflection (Glide Plane)

- Reflection followed by translation
- Translation is parallel to mirror plane
- Unlike the footsteps example, in 3D several choices of translation vector parallel to mirror plane
- Unique symbol for each glide plane

Glide Reflection (Glide Plane)

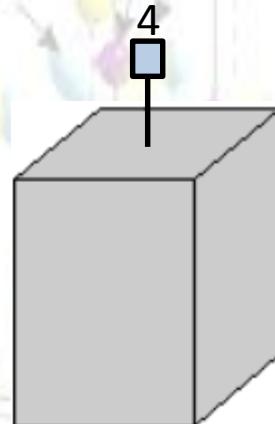
Hermann-Mauguin	Axis \perp to Glide Plane	Displacement vector
a	b or c	$a/2$
b	a or c	$b/2$
c	a or b	$c/2$
n	a b c	$b/2+c/2$ $a/2+c/2$ $a/2+b/2$
d	a b c	$b/4+c/4$ $a/4+c/4$ $a/4+b/4$

Screw Rotation

- Rotation followed by translation parallel to rotation axis
- Example: rotate by 120° and translate by $\frac{1}{3}$ of axis length. Denoted by 3_1
- Total possibilities are:
 - $2_1, 3_1, 4_1, 4_2, 6_1, 6_2, 6_3, 3_2, 4_3, 6_4$, and 6_5

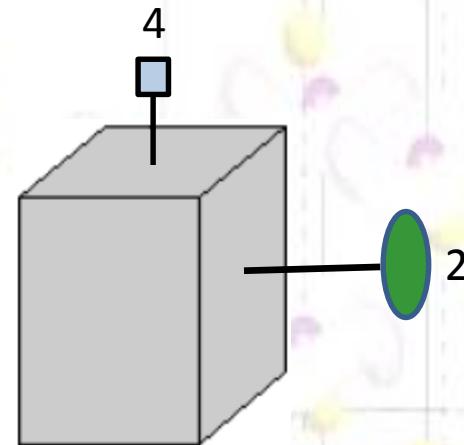
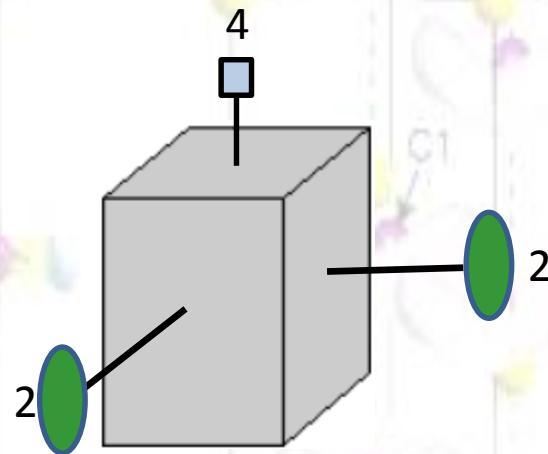
Symmetries Go Together

- Some symmetries will imply others
- For example, look at shape below
 - Square top face with rectangular sides (orthorhombic)
 - Square top face implies 4-fold axis of rotation (shown)



Symmetries Go Together

- Rectangular face on right must have a 2-fold axis. Goes right through the cell
- The 4-fold axis on the top face necessitates that the 2-fold axis is repeated on the front-to-back faces



The Minimum Symmetries to describe each Crystal System

These can be used, rather than the lattice parameters and angles (i.e. instead of the unit cells) to define the 7 systems.

Crystal System	Point Groups that define* them
Triclinic	Only inversion
Monoclinic	One 2-fold axis of rotation or one mirror plane
Orthorhombic	Three 2-fold axes of rot, or one 2-fold axis plus 2 mirror planes
Tetragonal	One 4-fold axis of rotation
Rhombohedral	One 3-fold axis of rotation
Hexagonal	One 6-fold axis of rotation
Cubic	Four 3-fold axes of rotation (4 triads)

These are the symmetries that each system **MUST have, by definition; there can be others.*

The Minimum Symmetries to describe each Crystal System

- Cubic – The secondary symmetry symbol will always be either 3 or -3 (i.e. $Ia3$, $Pm3m$, $Fd3m$)
- Tetragonal – The primary symmetry symbol will always be either 4, (-4) , 4_1 , 4_2 or 4_3 (i.e. $P4_12_12$, $I4/m$, $P4/mcc$)
- Hexagonal – The primary symmetry symbol will always be a 6, (-6) , 6_1 , 6_2 , 6_3 , 6_4 or 6_5 (i.e. $P6mm$, $P6_3/mcm$)
- Rhombohedral – The primary symmetry symbol will always be a 3, (-3) , 3_1 or 3_2 (i.e $P31m$, $R3$, $R3c$, $P312$)
- Orthorhombic – All three symbols following the lattice descriptor will be either mirror planes, glide planes, 2-fold rotation or screw axes (i.e. $Pnma$, $Cmc2_1$, $Pnc2$)
- Monoclinic – The lattice descriptor will be followed by either a single mirror plane, glide plane, 2-fold rotation or screw axis or an axis/plane symbol (i.e. Cc , $P2$, $P2_1/n$)
- Triclinic – The lattice descriptor will be followed by either a 1 or a (-1) .

Space Groups

- 230 of these
- Start from low symmetry
 - First two are triclinic
 - No 1 = $P\bar{1}$ has no symmetry beyond the triclinic shape
 - No 2 = $P\bar{1}$ has a centre of inversion
 - Nos 3-15 are monoclinic with various combinations of a 2-fold axis, a mirror plane, and base centred
 - Nos 16-74 are orthorhombic
 - Nos 75-142 are tetragonal
 - Nos 143-167 are rhombohedral
 - Nos 168-194 are hexagonal
 - Rest are cubic

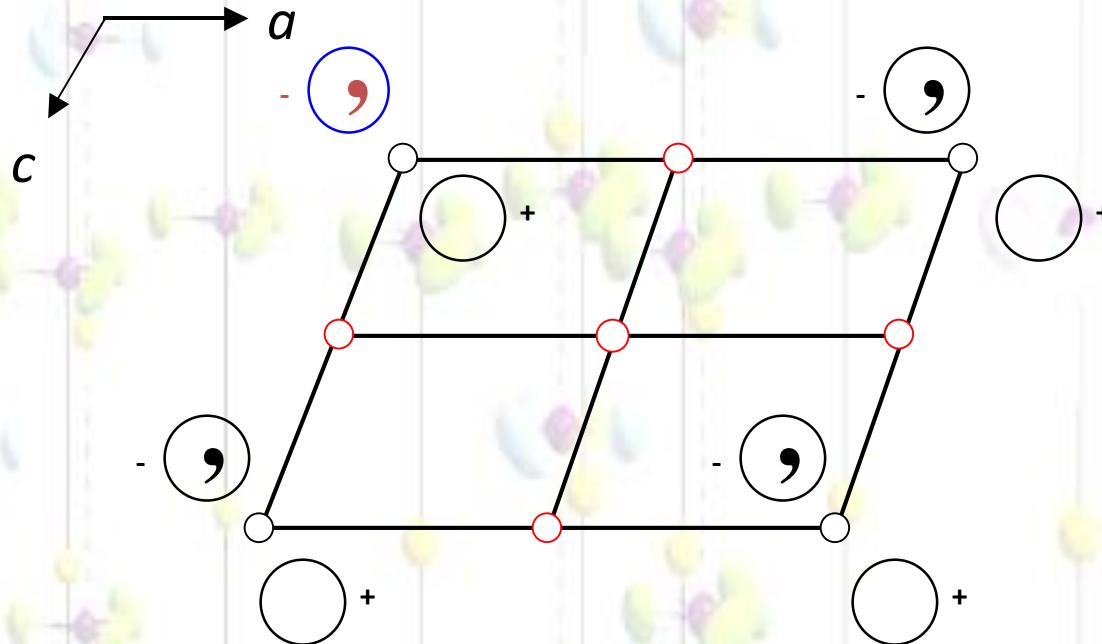
No 1 – P1



No 1 – P1

- This space group can contain molecules of one chirality only
 - Enantiomorphous
- It doesn't have a centre of symmetry
 - Non-centrosymmetric
- It contains one molecule per unit cell
 - $Z=1$

No 2 – $P\bar{1}$



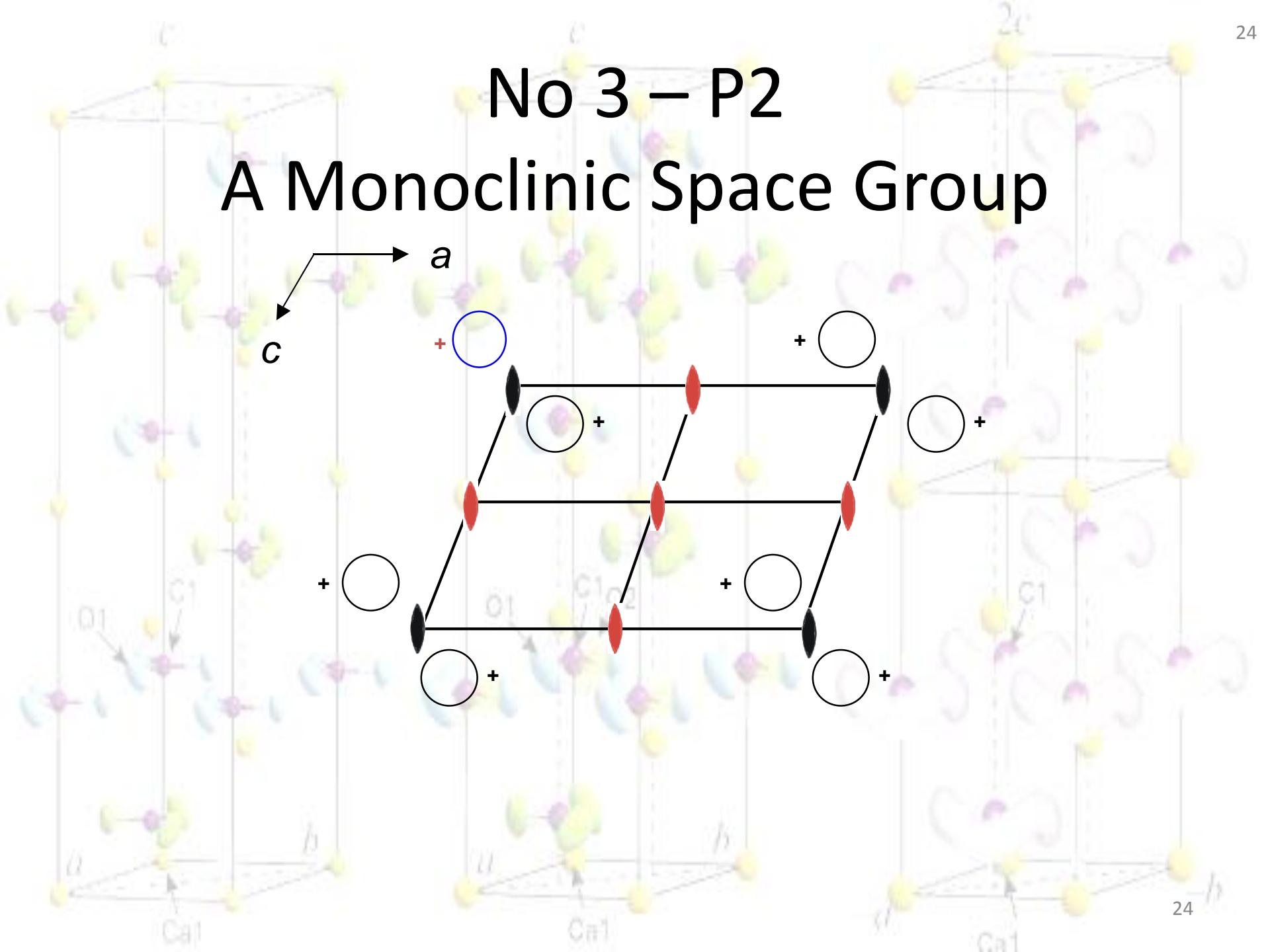
- The red circles represent the centres of symmetry
- The commas in the circles represent molecules of opposite chirality
- The centres of symmetry correspond to points of reduced multiplicity

No 2 – $\bar{P}1$

- $\bar{P}1$ is centrosymmetric
- It is non-enantiomorphous
- $Z=2$
- It contains positions of reduced multiplicity
 - These always correspond to position on point symmetries

No 3 – P2

A Monoclinic Space Group



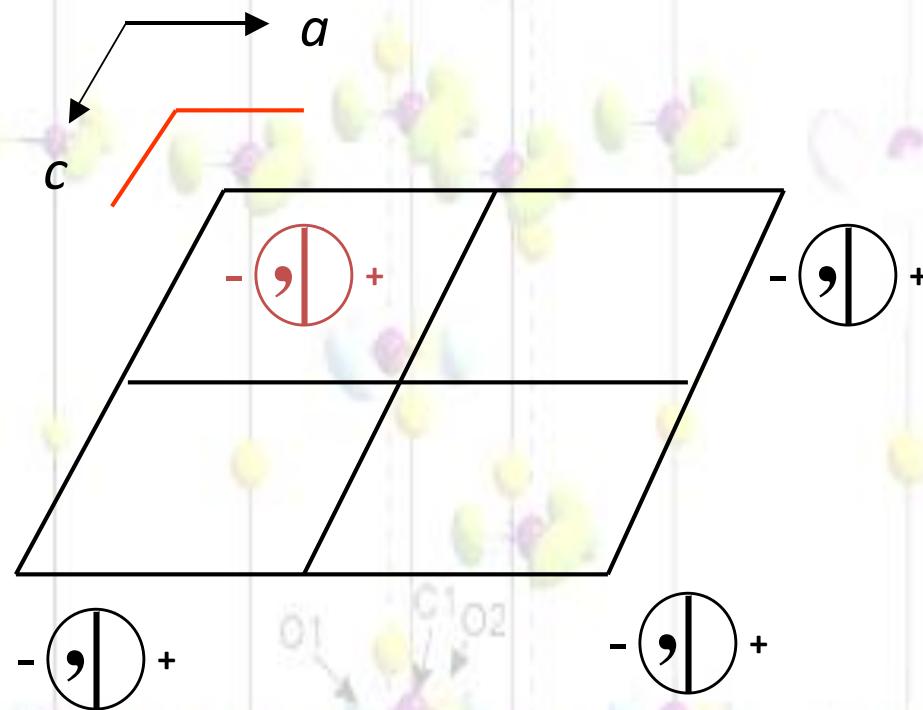
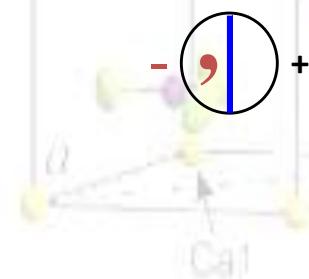
No 3 – P2

- P2 is non-centrosymmetric
- It is enantiomorphous
- Z=2
- Note the stand for 2-fold rotation axes

Enantiomorphism and Centrosymmetric

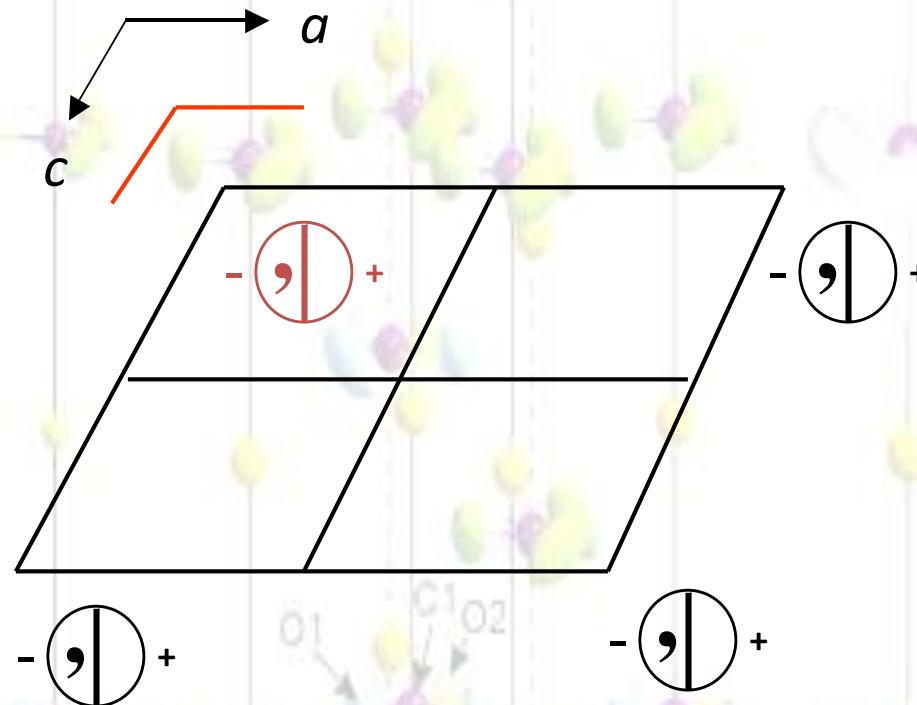
- If a group is centrosymmetric is must be non-enantiomorphous
- If it is non-centrosymmetric it can be either enantiomorphous or non-enantiomorphous

No 6 – Pm



Ca1

No 6 – Pm



This notation means there is a molecule of opposite chirality underneath the first

Wyckoff Sites

- One of the most useful bits of info in the Crystallographic Tables
- Tells us about the multiplicity of different sites in a crystal

Wyckoff Sites

- Take the Pm monoclinic space group above
 - Pm has only two symmetry elements
 - Mirror plane at $y=0$
 - Mirror plane at $y = \frac{1}{2}$
 - A general position in the unit cell will create two molecules
 - (x, y, z)
 - $(x, -y, z)$
 - But a position on either mirror plane won't generate a second molecule

Wyckoff Sites

- International table of space groups include Wyckoff sites
- Gives three for Pm

Multiplicity	Wyckoff Letter	Symmetry	Coordinates
2	c	1	(1)x,y,z (2)x, -y, z
1	b	m	x, $\frac{1}{2}$, z
1	a	m	x, 0, z

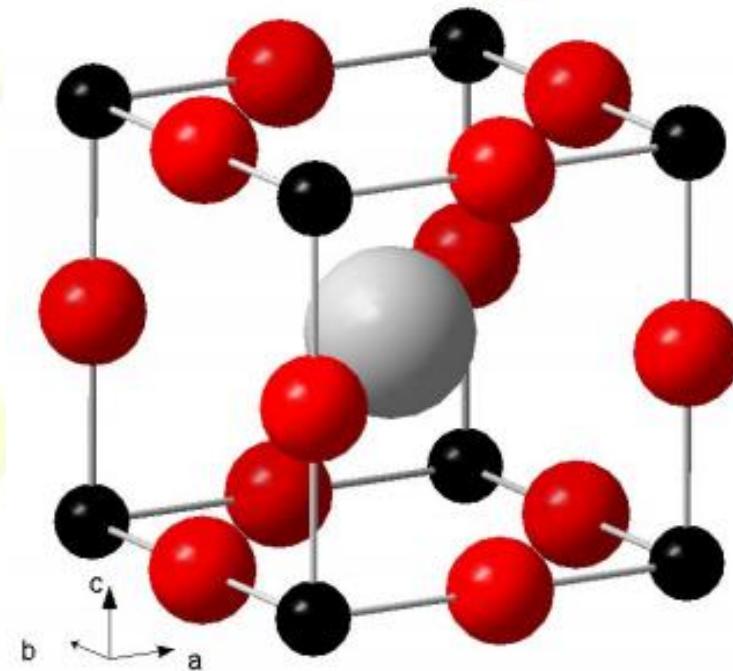
Wyckoff Sites - SrTiO₃

- From x-ray diffraction get space group Pm3m
- Lattice parameter 0.590nm
- Density 5100kg/m³
- Means Z=1
- For Pm3m there are lots of Wyckoff sites, but most have high multiplicity (up to 48). Can ignore these
- Possibilities for multiplicity ≤ 3 are given below

Multiplicity	Wyckoff Letter	Symmetry	Coordinates
3	d	4/mm	(1) $\frac{1}{2}, 0, 0$ (2) $0, \frac{1}{2}, 0$ (3) $0, 0, \frac{1}{2}$
3	c	4/mm	(1) $0, \frac{1}{2}, \frac{1}{2}$ (2) $\frac{1}{2}, 0, \frac{1}{2}$ (3) $\frac{1}{2}, \frac{1}{2}, 0$
1	b	$m\bar{3}m$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
1	a	$m\bar{3}m$	$0, 0, 0$

Wyckoff Sites - SrTiO_3

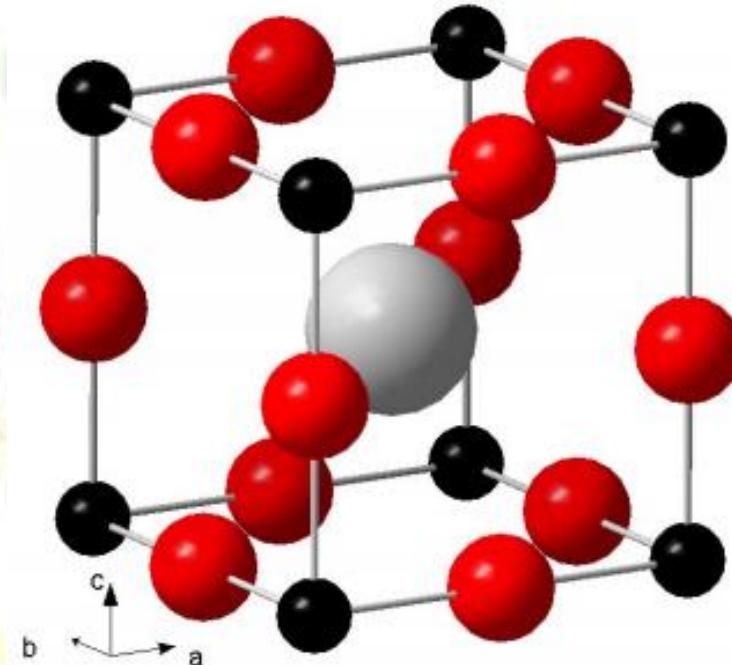
- Put Ti in site a (at the corners)
- Put Sr in site b (very centre)
- From bond lengths, obvious that O must be in site d
-



Example – SrTiO_3

- Space group $\text{Pm}3\text{m}$
- $a=0.390\text{nm}$

SrTiO_3



Example – CaF_2

- Space group $\text{Im}3\text{m}$
- $a=0.546\text{nm}$

