

1/ A parallel flow heat exchanger has oil in the shell ($c_{oil} = 1160\text{Jkg}^{-1}\text{K}^{-1}$) and water in the tubes ($c_{water} = 4190\text{Jkg}^{-1}\text{K}^{-1}$). The input temperature for the oil is 83°C and for the water is 18°C . The output temperature of the oil is 50°C . The flow rates for the oil and water are 1.3kg/s and 0.6kg/s respectively.

- Calculate the output temperature of the water
- Calculate the log mean temperature difference
- Calculate the UA value for the heat exchanger

[37.8°C, 31.6°C, 1577WK⁻¹]

2/ A counter flow heat exchanger has oil in the shell ($c_{oil} = 1160\text{Jkg}^{-1}\text{K}^{-1}$) and water in the tubes ($c_{water} = 4190\text{Jkg}^{-1}\text{K}^{-1}$). The input temperature for the oil is 23°C and for the water is 98°C . The output temperature of the oil is 75°C . The flow rates for the oil and water are 1.3kg/s and 0.6kg/s respectively.

- Calculate the output temperature of the water
- Calculate the log mean temperature difference
- Calculate the UA value for the heat exchanger

[66.8°C, 32.3°C, 2427WK⁻¹]

3/ A parallel flow heat exchanger has benzene in the shell ($c_{benzene} = 1080\text{Jkg}^{-1}\text{K}^{-1}$) and water in the tubes ($c_{water} = 4190\text{Jkg}^{-1}\text{K}^{-1}$). The input temperature for the benzene is 15°C and for the water is 85°C . The output temperature of the water is 65°C and the output temperature of the benzene is 45°C . The flow rate for the water is 2.0kg/s .

- Draw a diagram showing the temperature profiles of the hot and cold steams across the heat exchanger
- Calculate the flow rate of the benzene
- Calculate the log mean temperature difference
- Calculate the UA value for the heat exchanger

[5.17kg/s, 39.9°C, 4200WK⁻¹]

4/ A counter flow double pipe heat exchanger has an input stream of water (heat capacity = $4190\text{Jkg}^{-1}\text{oC}^{-1}$) at a temperature of 370K and at a flow rate of 5kg/s and an input stream of oil (heat capacity = $1160\text{Jkg}^{-1}\text{oC}^{-1}$) at a temperature of 278K . The output temperature of the water stream is 340K and the output temperature of the oil stream is 360K .

- Calculate the flow rate of the oil stream
- Calculate the log mean temperature difference
- Calculate the UA value for the heat exchanger

[6.61kg/s, 28.5°C, 22.05 kWK⁻¹]

5/ A counter flow double pipe heat exchanger has water (heat capacity = $4190\text{Jkg}^{-1}\text{oC}^{-1}$) in both streams. One stream has an input temperature of 350K and an output temperature of 300K . The other stream has an input temperature of 290K and an output temperature of 320K . The heat exchanger has a UA value of 5kW/K .

- Calculate the log mean temperature difference
- Calculate the flow rate of the hot stream
- Calculate the flow rate of the cold stream

[18.2°C, 0.43kg/s, 0.724kg/s]