

Material Balance

⌘ Key feature of process design

- ⌘ Determine amount of raw materials needed
- ⌘ Determine amount of product output
- ⌘ Balances over units set process stream flows and compositions
- ⌘ Provide information for equipment sizing

⌘ Process simulators help, but appreciation of material balances needed

- ⌘ Give better initial estimates to simulators which speed up convergence
- ⌘ Should check simulator output for important processes

General Procedure

- ⌘ Draw block diagram of process
- ⌘ List available data
- ⌘ List information required of balance
- ⌘ Write out chemical reactions
- ⌘ Decide system boundaries (for part or all or process)
- ⌘ Note other constraints (phase or reaction equilibria, tie components...)
- ⌘ Check number of equations and number of unknowns
- ⌘ Decide the basis of the calculation

Choice of Units

- # Flows can be expressed by weight (really mass), moles, or volumes
- # w/w, wt%, %wt all used for weight
- # Vol%, LV%, v/v used for volume
- # Example: technical grade hydrochloric acid has a strength of 28% w/w. Express this as a mole fraction
 - ▣ Molecular masses; water 18, HCl 36.5
 - ▣ In 100kg's, 28kg's are HCl
 - ▣ This is $28/36.5 = 0.77\text{kmol's}$
 - ▣ In 100kg's, 72kg's are H_2O
 - ▣ This is $72/18 = 4 \text{ kmol's}$
 - ▣ Total is $0.77 + 4 = 4.77\text{kmol's}$
 - ▣ Percentage of HCl is $0.77/4.77 = 0.16 = 16\%$
 - ▣ Percentage of H_2O is $4/4.77 = 0.84 = 84\%$

Stoichiometry

- ⌘ Stoichiometric equation states how many moles of reactants and products are involved
- ⌘ Equation must balance
- ⌘ Look at each species in turn and solve the simultaneous equations
- ⌘ Example
 - ↗ $a(C_2H_4) + \beta(Cl_2) + \gamma(O_2) \Rightarrow \delta(C_2H_3Cl) + \varepsilon(H_2O)$
 - ↗ Analysis gives $4C_2H_4 + 2Cl_2 + O_2 \Rightarrow 4C_2H_3Cl + 2H_2O$

System Boundaries

- ⌘ Material balance can be over entire process or any subset
- ⌘ Look at flows into and out of boundary
- ⌘ Clever choice of boundaries can simplify calculations
- ⌘ Any streams that are poorly known can be fully wrapped inside boundary
- ⌘ Recycle streams fully wrapped inside boundary

System Boundaries

Conversion, Selectivity, Yield

- ⌘ **Conversion** = (amount of reagent consumed) / (amount supplied)
- ⌘ Example: production of vinyl chloride by pyrolysis of dichloroethane. Conversion limited to 55% to reduce carbon formation. How much DCE fed to produce 5000kg/hr of VC? (molar weights are DCE=99 and VC=62.5)
[14405kg/hr]

Conversion, Selectivity, Yield

- ⌘ **Selectivity** = (moles of product formed) / (moles of product that could have been formed had all reacted feed been used to make product)
- ⌘ Addresses issues of side products
- ⌘ Selectivity better at low conversion rates

Conversion, Selectivity, Yield

⌘ **Yield** = (moles of product formed) /
(moles of product that could have been
formed had all feed been used to make
product)

$$\text{Yield} = \frac{\text{moles of product formed}}{(\text{moles of reagent used}) \times \text{stoichiometry}}$$

⌘ **Yield** = conversion x selectivity

Conversion, Selectivity, Yield

- In the production of ethanol by the hydrolysis of ethylene, diethyl ether is produced as a by-product. The feed stream composition is 55% ethylene, 5% inerts, 40% water. The composition of the product stream is 52.26% ethylene, 5.49% ethanol, 0.16% ether, 36.81% water, 5.28% inerts. All percentages are by mole. Calculate the selectivity of ethylene for ethanol and for ether and also the conversion of ethylene. The reactions are:

[selectivity for ethanol = 94.4%, for ether = 5.44%, conversion = 10%]

Conversion, Selectivity, Yield

❖ Yield Example

↗ In the chlorination of ethylene to produce DCE, the conversion of ethylene is 99%. If 94mol of DCE is produced from 100mol of ethylene reacted, calculate the selectivity and yield.

[94% and 93.1%]

Constraints on Flows and Compositions

- ⌘ Total flow rate of a stream = sum of flow rates of individual components
- ⌘ Stream specified by one of the following:
 - ◻ Flow rate of each component
 - ◻ Total flow rate plus composition
 - ◻ Flow rate of one component plus composition
- ⌘ Example:
 - ◻ Flow rate to a reactor consists of w/w 16% ethylene, 9% oxygen, 31% nitrogen, 44% hydrogen chloride. The ethylene flow is 5000kg/hr. Calculate individual component flows and the total stream flow.

[total=31,250kg/hr, O₂ =2813kg/hr, N₂ = 9687kg/hr, HCl=13,750kg/hr]

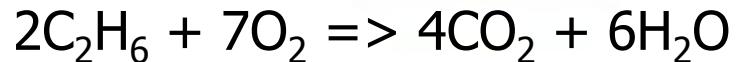
Tie Components

- ⌘ Components that pass unreacted through a process can be madly useful for calculations
- ⌘ Used to relate input and output compositions
- ⌘ These are called **Tie Components**
- ⌘ Example:
 - ↗ CO₂ at a rate of 10kg/hr is added to an air stream. After mixing the stream has 0.45% v/v CO₂. Normal air has 0.03% CO₂ by mol. Calculate the flow rate of the air stream

[1560kg/h]

Excess Reagent

⌘ In industrial reactions, an excess of one component is usually added


↳ Components not added in their stoichiometric ratios

⌘ The per cent excess is given by:

$$\text{Per cent excess} = \frac{\text{quantity supplied} - \text{stoichiometric quantity}}{\text{stoichiometric quantity}} \times 100$$

⌘ example:

↳ To ensure complete combustion, 20% excess air is supplied to a furnace burning 95% v/v methane, 5% ethane. Calculate the number of moles of air per mole of fuel. The reactions are:

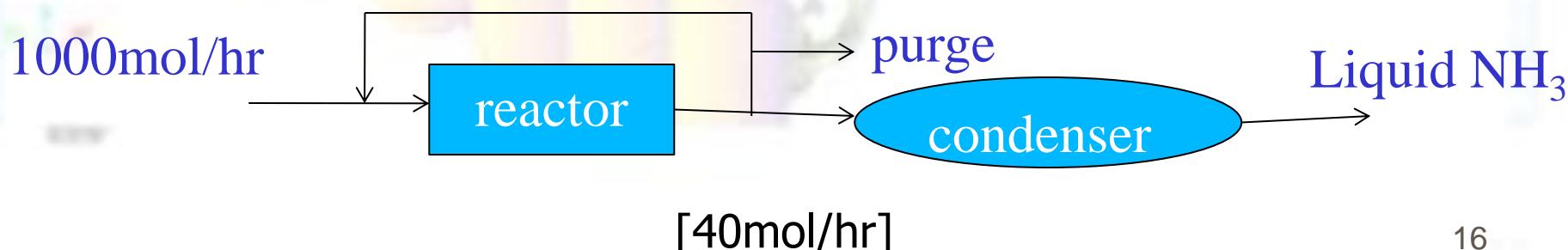
[11.86 moles per mole of fuel]

Recycle Processes

⌘ Material from a latter point in a process is fed back to an upstream unit

⌘ Examples:

- ↗ a reaction with appreciably less than 100% conversion, feed unreacted components back to reactor
- ↗ the reflux at the top of a distillation column


⌘ Greatly complicates mass balance calculations

⌘ Solutions:

- ↗ Used tear streams and iterate until consistent within tolerances
- ↗ Solve simultaneous equations

Purge

- ⌘ Recycle streams means there can be a build up of inert components within a process
- ⌘ Need to bleed these off somehow
- ⌘ Use purge streams
- ⌘ In steady state, rate of flow of inerts in purge stream equals rate of flow in feed stream
- ⌘ Example:
 - ⏟ 1000mol/hr feed of stoichiometric nitrogen and hydrogen is reacted to produce ammonia. Because the reaction conversion rate is low (~15%) the unreacted components are recycled. The feed stream contains 0.2% argon by mole. Calculate the purge rate required to keep the argon content of the recycle stream under 5% by mole.

