

Chapter 2

Units of Measurements and Calculations

Much bench work in a Chemistry or Biology lab consists of preparation of reagents. This involves:

- 1) Measuring out mass and volume accurately.
- 2) Computing the required quantities of mass and volume in order to make solutions of the required concentration.

Units of Measurements and Calculations

<i>Property Measured</i>	<i>Name of unit</i>	<i>Symbol</i>
Length	meter	m
Mass	kilogram	kg
Time	second	s
Temperature	Kelvin	K
Electric Current	Ampere	A
Amount of substance	mole	mol

Common prefixes used with SI units

<i>Prefix</i>	<i>Symbol</i>	<i>Factor</i>	<i>Example</i>
pico	p	10^{-12}	1 picometer = 1×10^{-12} m
nano	n	10^{-9}	1 nanogram = 1×10^{-9} g
micro	μ	10^{-6}	1 microliter (μ L) = 1×10^{-6} L
milli	m	10^{-3}	2 milliseconds (ms) = 2×10^{-3} s
centi	c	10^{-2}	5 centimeters (cm) = 5×10^{-2} m
deci	d	10^{-1}	1 deciliter (dL) = 1×10^{-1} L
kilo	k	10^3	1 kilometer(km) = 1×10^3 m
mega	M	10^6	3 megagrams (Mg) = 3×10^6 g
giga	G	10^9	5 gigameters (Gm) = 5×10^9 m

Scientific Notation

- An alternative to using prefixes
- Uses powers of ten to get across size of number
- For example speed of light is 300000000 m/s
- More convenient to write 3×10^8 m/s
- Big numbers
 - More decimal point to the left
 - Count number of jumps necessary to get simple number
 - Number of jumps becomes power of ten
 - Power of ten is positive
- Small numbers
 - More decimal point to the right
 - Count number of jumps necessary to get simple number
 - Number of jumps becomes power of ten
 - Power of ten is negative

Problems on Scientific Notation

1/ Express 0.00345m in scientific notation

Move decimal point so that there is one significant figure to the left of the decimal point => $3.45 \times 10^{\text{something}}$

Decimal point moves to the right => negative power of 10

Takes 3 steps to the right => power is -3

Answer is $3.45 \times 10^{-3}\text{m}$

2/ Express 0.078s in scientific notation

[$7.8 \times 10^{-2}\text{s}$]

3/ Express 94300kg in scientific notation

[$9.43 \times 10^4\text{kg}$]

Units of Volume

- ***The Cubic Metre (m^3) :***

This is the S.I. unit. It is the volume of a cube with an edge length of 1 m

- **The Litre:**

A cube with an edge length of 1 dm contains a volume of 1 cubic decimeter (1 dm^3)

The litre (1L) is a more common name for 1 dm^3

- **The cubic centimeter (1 cm 3):**

This is the volume of a cube with an edge length of 1 cm

It is also called a milliliter (ml) and is 0.001 L

1 m^3

Is a thousand
times bigger
than

1L

Is a thousand
times bigger
than

1 cm^3

Unit Conversion

- For all calculations it is necessary to convert all units to the same system.
- Length, Area and Volume
- Length:
 - $1 \text{ cm} = 1 \times 10^{-2} \text{ m}$
 - $1 \text{ mm} = 1 \times 10^{-3} \text{ m}$
- Area:
 - 1 cm^2
 - $= 1 \times 10^{-4} \text{ m}^2$
 - $1 \text{ mm}^2 = 1 \times 10^{-6} \text{ m}^2$
- Volume:
 - 1 cm^3
 - $= 1 \times 10^{-6} \text{ m}^3$
 - $1 \text{ mm}^3 = 1 \times 10^{-9} \text{ m}^3$
- Note: $1 \text{ cm}^3 = 1 \text{ ml} = 1 \text{ cc}$

Problems on Unit Conversion

1/ Convert $2.87 \times 10^{-2} \text{ cm}^2$ to m^2

- $1 \text{ cm}^2 = 1 \times 10^{-4} \text{ m}^2$
- take away 4 from the power of ten to change from cm^2 to m^2
- power goes from -2 to -6
- Answer is $2.87 \times 10^{-6} \text{ m}^2$

2/ Convert $9.2 \times 10^{-12} \text{ m}$ to mm

- [$9.2 \times 10^{-9} \text{ mm}$]

3/ Convert $6.914 \times 10^8 \text{ mm}^3$ to m^3

- [$6.914 \times 10^{-1} \text{ m}^3 = 0.6914 \text{ m}^3$]

4/ Convert $5.68 \times 10^2 \text{ m}^3$ to cc

- [$5.68 \times 10^8 \text{ cc}$]

Density

Density is the ratio of the mass of a substance to its volume.

- SI unit = kg/m^3
(using S.I. units of mass and volume)
- Other units:
 - g/cm^3
 - For gases we usually use units of g/L
- Most liquids and solids have densities that range from $0.9 \text{ g}/\text{cm}^3$ (ice) to $11.3 \text{ g}/\text{cm}^3$ (lead)
 - density of air = $1.2 \text{ g}/\text{L}$

1kgm^{-3}

Is the same as

$1\text{g}/\text{L}$

Is a thousand times smaller than

1gcm^{-3}

Density

- **Density = mass/volume**
- ***Density in kg/m³ = Density in g/cm³ x 1000***
- *Example*

Q. What is the density of lead if a cube of lead has an edge length of 2 cm and a mass of 90.7 g

In g/cm³ : volume = 2cm x 2cm x 2cm = 8cm³

$$\text{Density} = 90.7\text{g}/8\text{ cm}^3 = 11.3\text{ g/cm}^3$$

In kg/m³ : volume = $2 \times 10^{-2} \times 2 \times 10^{-2} \times 2 \times 10^{-2} = 8 \times 10^{-6} \text{ m}^3$

$$\text{Density} = 90.7 \times 10^{-3} \text{ kg/} 10^{-6} \text{ m}^3 = 11337 \text{ kg/m}^3$$

Question on Density

Ethylene glycol (antifreeze) has a density of 1.11 g/cm^3 (g/mL).

- (a) What volume of ethylene glycol will have a mass of 1850g ?
- (b) Write this volume in litres.

Uncertainty in measurement

- Any measurements has an uncertainty of at least one unit in the last digit of the reported value

Examples:

mass of 2.3g has an uncertainty of 0.1 g

mass of 2.294 g has an uncertainty of 0.001 g

A measured volume of 25.2 ml has an uncertainty of at least 0.1 ml (maybe 0.2 if 0.2 is the smallest graduation on the graduated cylinder used for measuring)

- all the measured digits in a determination including the last uncertain digit are called significant figures

Significant Figures

Significant figures come from the graduations/scale on the measuring device.

*Starting with the first nonzero digit on the left, count this digit and all remaining digits to the right
this is the number of significant figures*

- **Examples:**
- 1267 m has 4 significant figures
- 55.0g has 3 significant figures
- 70.607 mL has 5 significant figures
- 0.00832407 s has 6 significant figures

Significant Figures....

- *The number of significant figures can be uncertain in a number that ends with a zero to the left of where the decimal place would fall e.g. 1300 g*
- Using scientific notation is best (less ambiguity) e.g.:
 1.3×10^3 g (2 significant figures), 1.30×10^3 g (three significant figures) or 1.300×10^3 (four significant figures)
- we assume all zeros written down are significant

Rules for rounding numbers

Results calculated from a measurement are as uncertain as the measurement itself

- when adding or subtracting numbers we round to the same number of decimal places as the number with the least number of decimal places
- when multiplying or dividing we round to the same number of significant figures as the number with the least number of significant figures

Rules for rounding numbers

- when rounding numbers - if the leftmost digit to be dropped is less than 5 we do not change the remaining digits (for two significant figures 3.4456 rounds to 3.4)
 - if the leftmost digit to be dropped is greater than 5 we increase the last digit by 1 (for three s.d 23.387 and 23.3511 round to 23.4)
- Examples*
 - (a) Add 1.0023 g and 4.383 g = 5.385 (3 decimal places)
 - (b) Subtract 421.23 from 486 g
= 64.77 g = 65 g (no decimal places)

Rules for rounding numbers

- *Example*

(a) Multiply 0.6238 cm by 6.6 cm

4.1 cm² (2 significant digits)

(b) Divide 421.23 g by 486 ml

0.867 g/ml (3 significant digits)

- *Example*

A bathtub is 13.44 dm long, 5.920 dm wide and 2.54 dm deep. Calculate its volume in Litres

$$\begin{aligned}V &= l \times w \times d = 13.44 \text{ dm} \times 5.920 \text{ dm} \times 2.54 \text{ dm} \\&= 202 \text{ dm}^3 \text{ or } 202 \text{ L}\end{aligned}$$