


**Signals**

- 1) Explain what is meant by the following terms:
  - i) Accuracy
  - ii) Resolution
  - iii) Precision
- 2) During maintenance, a sensor was discovered to be precise but not accurate. What steps should be taken to improve the performance of the sensor?
- 3) Distinguish between a signal and data. What process is necessary to change a signal into data?
- 4) Distinguish between *information* and *knowledge* in a signal. What process is necessary to change information into knowledge?
- 5) What is meant by the dynamic range of a sensor output?
- 6) A temperature sensor has a range of  $-200^{\circ}\text{C}$  to  $+550^{\circ}\text{C}$  and a resolution of  $0.1^{\circ}\text{C}$ . Calculate the dynamic range of the sensor in decibels.
- 7) What is meant by drift in the performance of a sensor?
- 8) What is meant by rise time in the performance of a sensor? Describe an experiment to measure the rise time of a thermocouple.
- 9) Looking at the chart below, give reasons why K-type thermocouples are the most commonly used in industry.



- 10) What is the sensitivity of the K-type thermocouple above in  $\text{mV}/^{\circ}\text{C}$ ?
- 11) During calibration, a flowmeter measures takes a series of measurements of fluid flow and gets the following readings:  $3.45\text{kg/s}$ ,  $3.56\text{kg/s}$ ,  $3.13\text{kg/s}$ ,  $3.38\text{kg/s}$ ,  $3.40\text{kg/s}$ ,  $3.33\text{kg/s}$ , and  $3.35\text{kg/s}$ . The actual flow rate during calibration is  $3.40\text{kg/s}$ . Looking at these readings, characterise the performance of the flowmeter with respect to accuracy, precision, and resolution.
- 12) Over several months, a light sensor measures takes a series of measurements of light intensity of a calibration standard and gets the following figures:  $2.15\text{Wm}^{-2}$ ,  $2.18\text{Wm}^{-2}$ ,  $2.22\text{Wm}^{-2}$ ,  $2.24\text{Wm}^{-2}$ ,  $2.28\text{Wm}^{-2}$ ,  $2.32\text{Wm}^{-2}$ ,  $2.32\text{Wm}^{-2}$ , The actual light intensity should be constant and equal to  $2.01\text{Wm}^{-2}$ . Looking at these measurements, characterise the performance of the light sensor.

**Sensor Classification**

- 13) Explain the difference between a first order sensor and a second order sensor. Give an example of each.
- 14) Explain the difference between an analogue and a digital sensor, giving an example of each.
- 15) What are the advantages and disadvantages of null mode sensors compared to deflection mode sensors?

**Noise**

- 16) How can fluctuation noise be distinguished from shot noise or Johnson noise based on its spectrum?
- 17) Discuss thermal noise (Johnson noise) in terms of its origins, its frequency spectrum, and steps that can be taken to reduce it.
- 18) A pressure sensor has a resistance of  $2500\Omega$ . It operates over a bandwidth of  $2 \times 10^6\text{Hz}$  and produces a mean signal of 3.5V. Calculate the shot (quantisation) noise from this detector using the following equation:  $V_{\text{shot noise}} = \sqrt{2eVR\Delta f}$ . The charge on the electron is  $e = 1.6 \times 10^{-19}\text{C}$ .
- 19) A light detector has a resistance of  $2500\Omega$ . It operates over a bandwidth of  $2 \times 10^6\text{Hz}$  and at a temperature of 310K. Use the equation  $V_{\text{thermal noise}} = \sqrt{4kTR\Delta f}$  to calculate the thermal noise from this detector. Boltzmann's Constant has a value of  $k = 1.38 \times 10^{-23}\text{J/K}$